Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a < b < c thì a \(\ge\)2 ; b \(\ge\)3 ; c \(\ge\)5.
Ta có :
\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6},\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15},\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)
suy ra vế trái nhỏ hơn hoặc bằng :
\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\text{ ( đpcm )}\)
giả sử a<b<c thì a> hoặc bằng 2 , b> hoặc bằng 3 , c> hoặc bằng 5 ta có:
1/[a,b]=1/ab<hoặc=1/6 , 1/[b,c] = 1/bc < hoặc = 1/15 , 1/[c,a]=1/ca < hoặc =1/10
suy ra vế trái nhỏ hơn hoặc bằng :
1/6+1/15+1/10=1/3
[a;b]=ab
[b;c]=bc
[c;a]=ca
\(\Rightarrow\frac{1}{\left[a;b\right]}+\frac{1}{\left[b;c\right]}+\frac{1}{\left[c;a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)
=>đpcm
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)
Vì abc = 1 và a, b, c >0 nên tồn tại x, y, z > 0 sao cho a = x/y , b = y/z , c = z/x
Thay vào BĐT cần chứng minh ta được
1/(ab + a + 2) + 1/(bc + b + 2) + 1/(ca + c + 2)
= yz/(xy + xz + 2yz) + xz/(yz + xy + 2xz) + xy/(xz + yz + 2xy)
= yz/[(xy + yz) + (xz + yz)] + xz/[(yz + xz) + (xy + xz)] + xy/[(xz + xy) + (yz + xy)]
Mặt khác, theo Cauchy thì:
a + b ≥ 2√(ab)
1/a + 1/b ≥ 2√(1/ab)
Từ đó: (a + b)(1/a + 1/b) ≥ 4.√(ab/ab) = 4
<=> 4/(a + b) ≤ 1/a + 1/b
hay 1/(a + b) ≤ (1/4).(1/a + 1/b)
Sử dụng BĐT trên thì ta có:
1/[(xy + yz) + (xz + yz)] ≤ (1/4).[1/(xy + yz) + 1/(xz + yz)]
Hay
yz/[(xy + yz) + (xz + yz)] ≤ (1/4).[yz/(xy + yz) + yz/(xz + yz)] ---- (1)
Tương tự với 2 bộ còn lại
xz/[(yz + xz) + (xy + xz)] ≤ (1/4).[xz/(yz + xz) + xz/(xy + xz)] ---- (2)
và
xy/[(xz + xy) + (yz + xy)] ≤ (1/4).[xy/(xz + xy) + xy/(yz + xy)] ---- (3)
Cộng Vế (1), (2), (3) và nhóm những đa thức có mẫu chung ta được
Vế trái ≤ (1/4).[ (xy + yz)/(xy + yz) + (yz + xz)/(zy + xz) + (xz + xy)/(xz + xy)] = 3/4
Như vậy bài toán đã được chứng minh
Có :
[a,b]=a.b
[b,c]=b.c
[a,c]=c.a
Không mất tính tổng quát, ta giả sử a<b<c
\(\Rightarrow a\ge2;b\ge3;c\ge5\)
\(\Rightarrow\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{2.5}=\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)
(dpcm)