Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
bc - ab + ac - aa = -1
=> b.(c - a) + a.(c - a) = -1
=> (c - a) . (b + a) = -1
=> (c - a) . (b + a) = -1.1 = 1.(-1)
+) c - a + b + a = b + c = -1 + 1 = 0
=> b, c đối nhau
+) c - a + b + a = b + c = 1 + (-1) = 0
=> b, c đối nhau
Vậy b, c là 2 số đối nhau.
a, a2 + ab + 2a + 2b
= a(a + b) + 2(a + b)
= (2 + a)(a + b) chia hết cho a + b
b, Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2
Ta có:
a + (a + 1) + (a + 2) = 3a + 3 = 3(a + 1) chia hết cho 3
a)
=a^2+a.b+2a+2b
=a.a+a.b+2a+2b
=a(a+b)+2(a+b)
=(a+2).(a+b)
vì (a+b)chia hết cho (a+b)
=>a+2chia hết cho a+b
=>tổng (2+a)(a+b)=(a^2+a.b+2a+2b)chia hết cho (a+b)
b)
gọi 3 số nguyên liên tiếp là a;a+1;a+2
=>tổng là a+(a+1)+(a+2)
=a.a.a+3
=> tổng 3 số liên tiếp thì chia hết cho 3
Ta có : ab - ac + bc - c mũ 2 = -1
(ab-ac)+( bc - c mũ 2)= -1
=> a(b - c)+c ( b - c )= -1
=> ( b - c ).( a +c )= -1
Vì a ; b ; c là các số nguyên nên a + c =1 ; b - c = -1 hay a + c = -1 ; b - c = 1
=> a + b = 0 hay a và b là 2 số đối nhau
Chúc bạn làm bài thật tốt nhé. :D