\(a\ne c\)thỏa mãn \(\frac{a}{c}=\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

Ta có: \(\frac{a}{c}=\frac{a^2+b^2}{c^2+b^2}\)\(\Leftrightarrow a\left(c^2+b^2\right)=c\left(a^2+b^2\right)\)\(\Leftrightarrow ac^2+ab^2=a^2c+b^2c\Leftrightarrow ac\left(c-a\right)-b^2\left(c-a\right)=0\)

\(\Leftrightarrow\left(c-a\right)\left(ac-b^2\right)=0\)

Vì \(a\ne c\)nên \(c-a\ne0\)

Do đó \(ac-b^2=0\Leftrightarrow ac=b^2\Rightarrow\sqrt{ac}=b\)

Giả sử \(a^2+b^2+c^2\)là số nguyên tố

Ta có \(a^2+b^2+c^2=a^2+ac+c^2=\left(a+c\right)^2-ac=\left(a+c\right)^2-b^2\)\(=\left(a-b+c\right)\left(a+b+c\right)\)

\(=\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}\right)^2-2\sqrt{ac}+\left(\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

\(\left[\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}\right]\left[\left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\right]\)

Vì \(a^2+b^2+c^2\)là số nguyên tố nên có một ước số là 1

Mà \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}< \left(\sqrt{a}-\sqrt{c}\right)^2+3\sqrt{ac}\)

nên \(\left(\sqrt{a}-\sqrt{c}\right)^2+\sqrt{ac}=1\Leftrightarrow\left(\sqrt{a}-\sqrt{c}\right)^2=1-\sqrt{ac}\)

Vì \(a\ne c\Rightarrow\sqrt{a}\ne\sqrt{c}\Rightarrow\sqrt{a}-\sqrt{c}\ne0\)\(\Rightarrow\left(\sqrt{a}-\sqrt{c}\right)^2>0\)

Do đó \(1-\sqrt{ac}>0\Rightarrow\sqrt{ac}< 1\Rightarrow ac< 1\)(1)

Mà \(a^2+b^2>0\)và \(c^2+b^2>0\)nên \(\frac{a^2+b^2}{c^2+b^2}>0\Rightarrow\frac{a}{c}>0\Rightarrow\)a, c cùng dấu \(\Rightarrow ac>0\)(2)

Từ (1), (2) suy ra \(0< ac< 1\)

Mà a,c là số nguyên nên ac là số nguyên 

Do đó không có giá trị a,c thỏa mãn

suy ra điều giả sử sai

Vậy \(a^2+b^2+c^2\) không thể là số nguyên tố

1 tháng 12 2019

tự giải vl

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)

15 tháng 10 2017

bài 2

(bài này là đề thi olympic Toán,Ireland 1997),nhưng cũng dễ thôi

Giả sử ngược lại \(a^2+b^2+c^2< abc\)

khi đó \(abc>a^2+b^2+c^2>a^2\)nên \(a< bc\)

Tương tự \(b< ac,c< ab\)

Từ đó suy ra :\(a+b+c< ab+bc+ac\left(1\right)\)

mặt khác ta lại có:\(a^2+b^2+c^2\ge ab+bc+ac\)nên

\(abc>a^2+b^2+c^2\ge ab+bc+ac\)

\(\Rightarrow abc>ab+ac+bc\left(2\right)\)

Từ (1),(2) ta có\(abc>a+b+c\)(trái với giả thuyết)

Vậy bài toán được chứng minh

15 tháng 10 2017

3)để đơn giản ta đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\).Khi đó \(x,y,z>0\)

và \(xy+yz+xz\ge1\)

ta phải chứng minh  có ít nhất hai trong ba bất đẳng thức sau đúng

\(2x+3y+6z\ge6,2y+3z+6x\ge6,2z+3x+6y\ge6\)

Giả sử khẳng định này sai,tức là có ít nhất hai trong ba bất đẳng thức trên sai.Không mất tính tổng quát,ta giả sử

\(2x+3y+6z< 6\)và \(2y+3z+6x< 6\)

Cộng hai bất đẳng thức này lại,ta được:\(8x+5y+9z< 12\)

Từ giả thiết \(xy+yz+xz\ge1\Rightarrow x\left(y+z\right)\ge1-yz\)

\(\Rightarrow x\ge\frac{1-yz}{y+z}\)Do đó

\(8\frac{1-yz}{y+z}+5y+9z< 12\Leftrightarrow8\left(1-yz\right)+\left(5y+9z\right)\left(y+z\right)< 12\left(y+z\right)\)

\(\Leftrightarrow5y^2+6yz+9z^2-12y-12z+8< 0\)

\(\Leftrightarrow\left(y+3z-2\right)^2+4\left(y-1\right)^2< 0\)(vô lý)

mâu thuẫn này chứng tỏ khẳng định bài toán đúng.Phép chứng minh hoàn tất.

19 tháng 12 2021

668

123

xàm quá Nghêm Hoàng Nam

12 tháng 1 2018

Ta có , vì: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=3\)

=> \(1=\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)

=> \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)

=> \(a=b=c\)

=>\(abc=a^3\left(đpcm\right)\)

2 tháng 1 2019

Đặt a/b=x^3, b/c=y^3,c/a=z^3 . Vì a,b,c khác 0 nên x,y,z khác 0.

Ta có x^3.y^3.z^3=a/b.b/c.c/a=1 => (xyz)^3=1 => xyz=1 => x^3 +y^3 +z^3 =3xyz <=> x^3+y^3+z^3-3xyz=0 

=> (x+y)^3 + z^3 -3xy(x+y) - 3xyz =0 <=> (x+y+z)[(x+y)^2 -(x+y)z + z^2 ] -3xy(x+y+z) =0 =>(x+y+z)(x^2+y^2+z^2+2xy-3xy-xz-yz)=0

Vi x,y,z khác 0 nên x^2+y^2+z^2-xy-yz-xz=0 => 2x^2+2y^2+2z^2-2xy-2yz-2xz=0 => (x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)=0

<=> (x-y)^2+(y-z)^2+(x-z)^2=0 => x-y=0 ;y-z=0 ; x-z=0 => x=y=z => x^3=y^3=z^3 => a/b=b/c=c/a => a=b=c => abc=a^3=b^3=c^3 

Vậy tích abc lập phương của 1 số nguyên