\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1< 3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Ta có \(\sqrt{1+a}\le\frac{a\:+1+1}{2}=\frac{a+2}{2}\)

Tương tự \(\sqrt{1+b}\le\frac{b+2}{2}\)

\(\sqrt{1+C}\le\frac{c+2}{2}\)

Từ đó ta có \(\sqrt{1+a}+\sqrt{1+b}+\sqrt{1+c}\)<= \(\frac{a+b+c+6}{2}=\frac{7}{2}\)= 3,5

23 tháng 5 2018

Bạn alibaba nguyễn hình như đọc không kĩ đề thì phải, ở đây ng ta bảo chứng minh bé hơn đâu phải bé hơn hoặc bằng đâu mà bạn dừng lại ở đó không giải tiếp ? ĐOạn sau các bạn làm như này nhé :

Dấu "=" xảy ra <=>  \(\hept{\begin{cases}a+1=1\\b+1=1\\c+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\\c=0\end{cases}}}\)(Vô lý)
vậy dấu "=" không xảy ra => \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\)

1 tháng 1 2020

bài này hay đấy

Áp dụng BĐT Cô-si cho 3 số không âm, ta có :

\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)

Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )

do a,b,c là số nguyên 

Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng

Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1

Ta có : VT ( 1 ) 

\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)

\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)

\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)

\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)

Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

suy ra đpcm

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

23 tháng 7 2017

cảm ơn bạn vì đã giúp mình tìm hiểu thêm câu hỏi

28 tháng 7 2017

a) bđt cosi

b) \(\left(\sqrt{a+b}\right)=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)

\(a+b+2\sqrt{ab}>a+b\)

=> đpcm

c) xét hiệu \(a-\sqrt{a}+\frac{1}{4}+b-\sqrt{b}+\frac{1}{4}\ge0\)

d)https://olm.vn/hoi-dap/question/1003405.html

nè ngại làm

15 tháng 9 2019

Ta c/m 1) \(c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a,b>0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

2) \(a,b>0\)và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow c< 0\)và \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

Thật vậy ĐK: a+c>0, b+c>0 mà c<0 \(\Rightarrow a,b>0\)

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\Rightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow\hept{\begin{cases}c< 0\\c^2=ab+ac+bc+c^2\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c< 0\\ab+bc+ca=0\end{cases}\Rightarrow\hept{\begin{cases}c< 0\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}}\)

\(\Rightarrow\)đpcm

2) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\)mà \(a,b>0\Rightarrow c< 0\)

\(\frac{1}{c}=-\frac{1}{a}-\frac{1}{b}\Rightarrow c=\frac{-ab}{a+b}\)

\(\Rightarrow\hept{\begin{cases}a+c=a-\frac{ab}{a+b}=\frac{a^2}{a+b}\\b+c=b-\frac{ab}{a+b}=\frac{b^2}{a+b}\end{cases}}\)

\(\Rightarrow\sqrt{a+c}+\sqrt{b+c}=\frac{a}{\sqrt{a+b}}+\frac{b}{\sqrt{a+b}}=\frac{a+b}{\sqrt{a+b}}=\sqrt{a+b}\)

\(\Rightarrow\)Đpcm