Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
a2 + b2 + c2 = ( a - b )2 + ( b - c )2 + ( c - a )2
<=> a2 + b2 + c2 = a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2
<=> a2 + b2 + c2 - 2ab - 2bc - 2ca = 0 ( bớt a2 + b2 + c2 ở cả hai vế )
<=> a2 + b2 + c2 - 2( ab + bc + ca ) = 0
<=> a2 + b2 + c2 - 2.9 = 0
<=> a2 + b2 + c2 - 18 = 0
<=> a2 + b2 + c2 = 18
Xét ( a + b + c )2 ta có :
( a + b + c )2 = a2 + b2 + c2 + 2ab + 2bc + 2ca
= ( a2 + b2 + c2 ) + 2( ab + bc + ca )
= 18 + 2.9
= 18 + 18 = 36
=> ( a + b + c )2 = 36
=> a + b + c = 6 ( do a, b, c là các số dương )
ta có a+b+c=6=> (a+b+c)^2=36
<=> a^2+b^2+c^2+2(ab+bc+ca)=36
<=> a^2+b^2+c^2=36-2(ab+bc+ca) (1)
theo đề bài ta có
(a-b)^2+(b-c)^2+(a-c)^2=a^2+b^2+c^2
<=> a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=a^2+b^2+c^2
<=> 2(a^2+b^2+c^2)-2(ab+bc+ca)=a^2+b^2+c^2
<=>-2(ab+bc+ca )=-(a^2+b^2+c^2)
<=> ab+bc+ca=(a^2+b^2+c^2)/2 (2)
(1),(2)=> ab+bc+ca=[36-2(ab+bc+ca)]/2
2(ab+bc+ca)=36-2(ab+bc+ca)
4(ab+bc+ca)=36
vậy ab+bc+ca=9
Áp dụng bất đẳng thức Cosi, ta có:
\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:
\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)
Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:
\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)
\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)
\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)
\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)
\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Ta có: (a - b)2 + (b - c)2 + (a - c)2 = a2 + b2 + c2
<=> a2 - 2ab + b2 + b2 - 2bc + c2 + a2 - 2ac + c2 = a2 + b2 + c2
<=> a2 + b2 + c2 = 2(ab + bc + ac)
<=> ab + bc + ac = \(\frac{a^2+b^2+c^2}{2}\) (1)
Ta lại có: a + b + c = 6
<=> (a + b + c)2 = 36
<=> a2 + b2 + c2 + 2(ab + bc + ac) = 36
<=> a2 + b2 + c2 + a2 + b2 + c2 = 36 (vì a2 + b2 + c2 = 2(ab + bc + ac)
<=> 2(a2 + b2 + c2) = 36 <=> a2 + b2 + c2 = 18
<=> \(\frac{a^2+b^2+c^2}{2}=9\)(2)
Từ (1) và (2) => ab + ac + bc = 9