Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh bất đẳng thức phụ: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)} \)
\(\left(a+b\right)^2\ge4ab\)
\(a^2+2ab+b^2-4ab\ge0\)
\(\left(a-b\right)^2\ge0\)(luôn đúng)
Xét c+1 = a+b+c+c
Áp dụng bất đẳng thức trên, ta có:
\(\frac{ab}{c+1}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
Cộng vế theo vế, ta có:
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab}{b+c}+\frac{ab}{c+a}+\frac{bc}{c+a}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+bc}{c+a}+\frac{bc+ca}{a+b}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{a\left(b+c\right)}{b+c}+\frac{b\left(a+c\right)}{c+a}+\frac{c\left(b+a\right)}{a+b}\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(a+b+c\right)\)
\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\)
=> Điều phải chứng minh
ta có với x,y>0 thì \(\left(x+y\right)^2\ge4xy\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(*) dấu "=" xảy ra khi x=y
áp dụng bđt (*) và do a+b+c=1 nên ta có
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)+\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
tương tự ta có \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right);\frac{ca}{b+1}\le\frac{ca}{4}\left(\frac{1}{b+a}+\frac{1}{b+c}\right)\)
\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}\left(\frac{ab+bc}{c+a}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)
\(\Rightarrow\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{c+a}{b+1}\le\frac{1}{4}\)
dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
Ta có: \(ab+bc+ca=abc\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(A=\frac{a}{bc\left(a+1\right)}+\frac{b}{ca\left(b+1\right)}+\frac{c}{ab\left(c+1\right)}\)
\(\Rightarrow A=\frac{\frac{1}{b}.\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}.\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{b}.\frac{1}{a}}{1+\frac{1}{c}}\)
Đặt: \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow x+y+z=1\)
\(A=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
Ta có: \(\frac{xy}{z+1}=\frac{xy}{\left(z+x\right)+\left(z+y\right)}\le\frac{1}{4}\left(\frac{xy}{x+z}+\frac{xy}{y+z}\right)\)
Chứng minh tương tự ta được:
\(\frac{yz}{x+1}\le\frac{yz}{x+y}+\frac{yz}{x+z}\)
\(\frac{zx}{y+1}\le\frac{zx}{x+y}+\frac{zx}{y+z}\)
Cộng vế với vế:
\(\Rightarrow A\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\left(đpcm\right)\)
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
Ta chứng minh:\(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Đặt vế 1 là A, vế 2 là B ta có A-B(khai triển tung tóe ra)=\(a^2b+ab^2+b^2c+bc^2+c^2a+ca^2-6abc\ge0\)
\(\Rightarrow\left(a^2b-2abc+bc^2\right)+\left(b^2c-2abc+ca^2\right)+\left(c^2a-2abc+ab^2\right)\ge0\)
\(\Rightarrow\left(a-\sqrt{b}\right)^2+\left(b-\sqrt{c}\right)^2+\left(c-\sqrt{a}\right)^2\ge0\).Đúng nên ta có bất đẳng thức trên
Chuyển vế ta có:\(ab+bc+ca\le\frac{9\left(a+b\right)\left(b+c\right)\left(c+a\right)}{4\times2\times\left(a+b+c\right)}\le\frac{9}{4\times3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\frac{9}{4\times3}=\frac{3}{4}\)
Vậy ab+bc+ca nhỏ hơn hoặc băng 3/4. bấm đúng cho mình nha
đề thi chuyên toán ak. hình như là dùng bu nhi a cốp xki. e lớp 8 ko bít
Sửa đề: Cho a, b, c là các số thực dương thỏa mãn điều kiện abc=1. Chứng minh rằng
\(\frac{1}{ab+b+2}+\frac{1}{bc+c+2}+\frac{1}{ca+a+2}\le\frac{3}{4}\)
Áp dụng bđt Cauchy-Schwarz ta có:
\(\frac{1}{ab+b+2}=\frac{1}{ab+1+b+1}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{b+1}\right)\) \(=\frac{1}{4}\left(\frac{abc}{ab\left(1+c\right)}+\frac{1}{b+1}\right)=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{b+1}\right)\)
Tương tự \(\frac{1}{bc+c+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{c+1}\right)\)
\(\frac{1}{ca+a+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{a+1}\right)\)
Cộng từng vế các bđt trên ta được
\(VT\le\frac{1}{4}\left(\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\right)=\frac{3}{4}\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Từ \(a+b+ab=3\Rightarrow a+b=3-ab\ge3-\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow\left(a+b+6\right)\left(a+b-2\right)\ge0\Rightarrow a+b\ge2\)
Biến đổi bài toán như sau:
\(P=\frac{3a}{b+1}+\frac{3b}{a+1}+\frac{ab}{a+b}-a^2-b^2\le\frac{3}{2}\)
Tức là chứng minh \(\frac{3}{2}\) là GTLN của \(P\)
\(P=\frac{3\left(a^2+b^2\right)+3\left(a+b\right)}{ab+a+b+1}+\frac{3-a-b}{a+b}-\left(a+b\right)^2++2\left(3-a-b\right)\)
\(=\frac{3}{4}\left[3\left(a+b\right)^2-6\left(3-a-b\right)+3\left(a+b\right)\right]\)
\(+\frac{3}{a+b}-1-\left(a+b\right)^2+6-2\left(a+b\right)\)
Khảo sat đồ thì trên \(a+b\ge2\) tìm tìm được \(P_{Max}=\frac{3}{2}\)
P/s:giờ mk đi ngủ, mệt r` chỗ nào khó hiểu mai hỏi :D
ta có: \(VT=\frac{a\left(a+b+ab\right)}{b+1}+\frac{b\left(a+b+ab\right)}{a+1}+\frac{ab}{a+b}\)
\(=a^2+b^2+\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\)
cần cm \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}\)
theo giả thiết \(4=\left(a+1\right)\left(b+1\right)\le\frac{1}{4}\left(a+b+2\right)^2\)
\(\Leftrightarrow a+b\ge2\)
ta có: \(\frac{ab}{a+b}=\frac{ab+a+b}{a+b}-1=\frac{3}{a+b}\le\frac{3}{2}-1\)(*)
\(\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{1}{4}\left(b+ab\right)+\frac{1}{4}\left(a+ab\right)=\frac{1}{4}\left(3+ab\right)\)(**)
giờ cần tìm max ab.để ý rằng \(ab=ab+a+b-\left(a+b\right)=3-\left(a+b\right)\le3-2=1\)
khi đó \(\frac{ab}{a+b}+\frac{ab}{a+1}+\frac{ab}{b+1}\le\frac{3}{2}-1+\frac{1}{4}\left(3+1\right)=\frac{3}{2}\)(đpcm)
dấu = xảy ra khi a=b=1