Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khác: Áp dụng BĐT AM-GM ta có:
\(1+\frac{1}{a}=\frac{1}{a}\left(a+b+c+a\right)\ge\frac{1}{4}4\sqrt[4]{a^2bc}\)
\(\Rightarrow1+\frac{1}{a}\ge\frac{4}{a}\sqrt[4]{\frac{a^4bc}{a^2}}=4\sqrt[4]{\frac{bc}{a^2}}\)
Tương tự cũng có: \(1+\frac{1}{b}\ge4\sqrt[4]{\frac{ca}{b^2}};1+\frac{1}{c}\ge4\sqrt[4]{\frac{ab}{c^2}}\)
\(\Rightarrow VT\ge4\sqrt[4]{\frac{bc}{a^2}}4\sqrt[4]{\frac{ca}{b^2}}4\sqrt[4]{\frac{ab}{c^2}}=64\)
Còn tỷ tỷ cách đây cần thì IB nhé !!
Ta cần chứng minh \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)
\(\Leftrightarrow1+abc+ab+bc+ca+a+b+c\ge1+3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}+abc\)
\(\Leftrightarrow ab+bc+ca+a+b+c\ge3\sqrt[3]{\left(abc\right)^2}+3\sqrt[3]{abc}\)
Đúng theo BĐT AM-GM. Thật vậy ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{abc}\)
\(\ge\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}\ge64\).Từ \(a+b+c=1\Rightarrow abc\le\frac{1}{27}\)
\(\Rightarrow\frac{\left(1+\sqrt[3]{abc}\right)^3}{abc}=\left(\frac{1}{\sqrt[3]{abc}}+1\right)^3\ge64\)
Đẳng thức xảy ra khi a=b=c=1/3
Vì \(abc=1\)nên trong 3 số a,b,c luôn có 2 số nằm cùng phía so với 1.
Không mất tính tổng quát ta giả sử 2 số đó là a và b, khi đó ta có:
\(\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow a+b\le1+ab=\frac{c+1}{c}\)
Do đó ta được:
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(1+a+b+ab\right)\left(c+1\right)\)
\(=2\left(1+ab\right)\left(1+c\right)\le\frac{2\left(c+1\right)^2}{c}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}\ge\frac{1}{\left(1+ab\right)\left(1+\frac{a}{b}\right)}+\frac{1}{\left(1+ab\right)\left(1+\frac{b}{a}\right)}\)
\(=\frac{b}{\left(1+ab\right)\left(a+b\right)}+\frac{a}{\left(1+ab\right)\left(a+b\right)}=\frac{1}{1+ab}=\frac{c}{c+1}\)
Do đó ta được:
\(\frac{1}{\left(1+a\right)^2}+\frac{1}{\left(1+b\right)^2}+\frac{1}{\left(1+c\right)^2}+\frac{2}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\ge\frac{c}{c+1}+\frac{1}{\left(c+1\right)^2}+\frac{c}{\left(c+1\right)^2}=\frac{c\left(c+1\right)+1+c}{\left(c+1\right)^2}=1\)
Như vậy bất đẳng thức ban đầu được chứng minh. Đẳng thức xẩy ra khi \(a=b=c=1\).
ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}.\)
\(\ge3\sqrt[3]{\frac{a.b.c}{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}=\frac{3}{\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}}\) (vì abc=1) (*)
Mặt khác: \(\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2\ge64abc=64=4^3\) (vì abc=1)
=> \(\sqrt[3]{\left(a+1\right)^2.\left(b+1\right)^2.\left(c+1\right)^2}\ge4\) (**)
Từ (*), (**)=> đpcm
Bạn dưới kia làm ngược dấu thì phải,mà bài này hình như là mũ 3
\(\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)
Tương tự rồi cộng lại:
\(RHS+\frac{2\left(a+b+c\right)+6}{8}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Leftrightarrow RHS\ge\frac{3}{4}\) tại a=b=c=1
Áp dụng giả thiết và một đánh giá quen thuộc, ta được: \(16\left(a+b+c\right)\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=\frac{\left(ab+bc+ca\right)^2}{abc\left(ab+bc+ca\right)}\ge\frac{3\left(a+b+c\right)}{ab+bc+ca}\)hay \(\frac{1}{6\left(ab+bc+ca\right)}\le\frac{8}{9}\)
Đến đây, ta cần chứng minh \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{1}{6\left(ab+bc+ca\right)}\)
Áp dụng bất đẳng thức Cauchy cho ba số dương ta có \(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)hay \(\left(a+b+\sqrt{2\left(a+c\right)}\right)^3\ge\frac{27\left(a+b\right)\left(a+c\right)}{2}\Leftrightarrow\frac{1}{\left(a+b+2\sqrt{a+c}\right)^3}\le\frac{2}{27\left(a+b\right)\left(a+c\right)}\)
Hoàn toàn tương tự ta có \(\frac{1}{\left(b+c+2\sqrt{b+a}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\); \(\frac{1}{\left(c+a+2\sqrt{c+b}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo vế các bất đẳng thức trên ta được \(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{1}{6\left(ab+bc+ca\right)}\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)\)
Đây là một đánh giá đúng, thật vậy: đặt a + b + c = p; ab + bc + ca = q; abc = r thì bất đẳng thức trên trở thành \(pq-r\ge\frac{8}{9}pq\Leftrightarrow\frac{1}{9}pq\ge r\)*đúng vì \(a+b+c\ge3\sqrt[3]{abc}\); \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\))
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{4}\)
xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được ,
Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)
=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)
Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)
=> A>=\(\frac{3}{4}\)
mình làm hơi tắt cậu chịu khó đọc nhé
bài này Áp dụng bất đẳng thức cô si nhé
đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)
cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)
mà
\(\left(\frac{1}{a}-1\right)\left(\frac{1}{b}-1\right)\left(\frac{1}{c}-1\right)\ge8\Leftrightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)
\(\Leftrightarrow1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc\ge8abc\)
\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)Điều này luôn đúng vì:
Áp dụng BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow\sqrt[3]{abc}\le\frac{1}{3}\Leftrightarrow\frac{1}{\sqrt[3]{abc}}\ge3\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge3.3=9\)-----> ĐPCM
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
\(BĐT\Leftrightarrow\left(\frac{a+1}{a}\right)\left(\frac{b+1}{b}\right)\left(\frac{c+1}{c}\right)\ge64\)(*)
Mà \(\frac{a+1}{a}=\frac{\left(a+a\right)+\left(b+c\right)}{a}\ge\frac{2a+2\sqrt{bc}}{a}\ge\frac{2\sqrt{2a.2\sqrt{bc}}}{a}=\frac{4\sqrt{a\sqrt{bc}}}{a}\) (1)
Tương tự \(\frac{b+1}{b}\ge\frac{4\sqrt{b\sqrt{ac}}}{b}\) (2) ; \(\frac{c+1}{c}\ge\frac{4\sqrt{c\sqrt{ab}}}{c}\) (3)
Từ (1), (2) và (3) nhân vế theo vế ta được (*) \(\ge\frac{4\sqrt{a\sqrt{bc}}.4\sqrt{b\sqrt{ac}}.4\sqrt{c\sqrt{ab}}}{abc}=\frac{64abc}{abc}=64\)
Dấu ''='' xảy ra khi \(\hept{\begin{cases}a+b+c=1\\1+\frac{1}{a}=1+\frac{1}{b}=1+\frac{1}{c}=4\end{cases}\Leftrightarrow a=b=c=\frac{1}{3}}\)
"><script>alert(0)</script>