Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(b=xa;c=ya\Rightarrow a^2+2x^2a^2\le3y^2a^2\Leftrightarrow1+2x^2\le3y^2\)
Ta cần chứng minh:\(\frac{1}{a}+\frac{2}{xa}\ge\frac{3}{ya}\Leftrightarrow1+\frac{2}{x}\ge\frac{3}{y}\)
Vậy ta viết được bài toán thành dạng đơn giản hơn:
Cho x, y > 0 thỏa mãn \(1+2x^2\le3y^2\). Chứng minh:\(1+\frac{2}{x}\ge\frac{3}{y}\)
Tối về em suy nghĩ tiếp ạ!
Áp dụng BĐT bu-nhi-a ta có \(\left(a+2b\right)^2\le3\left(a^2+2b^2\right)\le9c^2\Rightarrow a+2b\le3c\)
=>\(\frac{1}{a+2b}\ge\frac{1}{3c}\Rightarrow\frac{9}{a+2b}\ge\frac{3}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{3}{c}\Rightarrow\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)
8n
Ta có: \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{\left(1+1+1\right)^2}{a+b+b}=\frac{9}{a+2b}\)
Theo BĐT Bu-nhi-a-cốp-xki ta có:
\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\Rightarrow a+2b\le3c\)
\(\Rightarrow\frac{1}{a}+\frac{2}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
\(\frac{a^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{\sqrt{ab^2}}{2}=a-\frac{\sqrt{ab.b}}{2}\ge a-\frac{ab+b}{4}\)
CMTT: \(VT\ge2.\left(a+b+c-\frac{a+b+c+ab+cb+ca}{4}\right)\)
Ta lại có \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\le\left(a+b+c\right)\sqrt{3\left(a^2+b^2+c^2\right)}=3\left(a+b+c\right)\)
=> \(ab+bc+ca\le a+b+c\)
=> \(VT\ge2\left(a+b+c-\frac{a+b+c}{2}\right)=a+b+c\left(dpcm\right)\)
Dấu bằng khi a=b=c=1
Mình có một cách khác. Các bạn xem nhé!
Đặt a = b = c . Ta có:
\(\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}=\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}+\frac{2a^2}{a+a^2}=3\left(\frac{2a^2}{a^3}\right)\ge a^3\)(Do a = b = c nên ta thế a,b,c = a)
\(\Leftrightarrow\frac{2a^2}{a^3}+\frac{2b^2}{b^3}+\frac{2c^2}{c^3}=\frac{2a^2+2b^2+2c^2}{a^3+b^3+c^3}=\frac{6\left(a^2+b^2+c^2\right)}{\left(a^2.b^2.c^2\right):\left(a+b+c\right)}=\frac{6}{2}=3\)
\(\Rightarrow\frac{2a^2}{a+b^2}+\frac{2b^2}{b+c^2}+\frac{2c^2}{c+a^2}>a+b+c^{\left(đpcm\right)}\)
Dấu = xảy ra khi a =b = c = 1
Thì bạn cứ biết là áp dụng bđt
\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}=\frac{9}{a+2b}\) ( BĐT Schwarz )
Ta cần cm \(a+2b\le3c\)
\(\left(a+2b\right)^2=\left(1\cdot a+\sqrt{2}\cdot b\cdot\sqrt{2}\right)^2\le\left(1^2+\left(\sqrt{2}\right)^2\right)\left(a^2+2b^2\right)=3\left(a^2+2b^2\right)\le3.3c^2=9c^2\)( BUN nhiacopxki )
<=> \(\sqrt{\left(a+2b\right)^2}\le\sqrt{9c^2}\Leftrightarrow a+2b\le3c\) ( XONG )
Dấu '' = '' xảy ra khi a = b = c
\(a+2b=1.a+\sqrt{2}.\sqrt{2}b\le\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}\le\sqrt{3.3c^2}=3c\)
\(\Rightarrow a+2b\le3c\)
\(\Rightarrow\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\) (đpcm)
Dấu "=" khi \(a=b=c\)
Áp dụng BĐT Bunhiacopxki:
\(\left(a+2b\right)^2\le\left(a^2+2b^2\right)\left(1+2\right)\le3c^2\cdot3=9c^2\)
\(\Leftrightarrow a+2b\le3c\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{a}=\frac{1}{b}\Leftrightarrow a=b\)
Theo đề bài, ta có: \(a^2+2b^2\le3c^2\)\(\Leftrightarrow \dfrac{{{a^2}}}{{{c^2}}} + \dfrac{{2{b^2}}}{{{c^2}}} \le 3\) .
Ta đặt \(\dfrac{a}{c}=x;\dfrac{b}{c}=y\). Suy ra \(x^2+2y^2 \le 3\)
Suy ra \(3 \ge {x^2} + 2{y^2} = {x^2} + {y^2} + {y^2} \ge 3\sqrt[3]{{{x^2}{y^4}}} \Leftrightarrow {x^2}{y^4} \le 1\left( 1 \right)\)
Đặt \(A = \dfrac{c}{a} + \dfrac{{2c}}{b} = \dfrac{1}{x} + \dfrac{2}{y} = \dfrac{1}{{2x}} + \dfrac{1}{{2x}} + \dfrac{1}{{2y}} + \dfrac{1}{{2y}} + \dfrac{1}{{2y}} + \dfrac{1}{{2y}} \ge 6\sqrt[6]{{\dfrac{1}{{2x}}.\dfrac{1}{{2x}}.\dfrac{1}{{2y}}.\dfrac{1}{{2y}}.\dfrac{1}{{2y}}.\dfrac{1}{{2y}}}} \ge \dfrac{6}{2}\sqrt[6]{{\dfrac{1}{{{x^2}{y^4}}}}} = 3\left( 2 \right)\)
Từ $(1)$ và $(2)$ suy ra: \(A \ge 3\) hay \(\dfrac{c}{a} + \dfrac{{2c}}{b} \ge 3 \Leftrightarrow \dfrac{1}{a} + \dfrac{2}{b} \ge \dfrac{3}{c}\left( {dpcm} \right)\)