Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(a+b+c\ge3\sqrt[3]{abc}=6\) \(\Rightarrow2\left(a+b+c\right)\ge12\Rightarrow-12\ge-2\left(a+b+c\right)\)
Ta có:
\(a^2+b^2+c^2=a^2+4+b^2+4+c^2+4-12\ge4a+4b+4c-2\left(a+b+c\right)=2\left(a+b+c\right)\)
b.
\(a^3+b^3+c^3=\dfrac{1}{2}\left(a^3+a^3+8\right)+\dfrac{1}{2}\left(b^3+b^3+8\right)+\dfrac{1}{2}\left(c^3+c^3+8\right)-12\)
\(\ge3a^2+3b^2+3c^2-12\ge3a^2+3b^2+3c^2-2\left(a+b+c\right)\ge3a^2+3b^2+3c^2-\left(a^2+b^2+c^2\right)=...\)
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
ta có :
\(\frac{a^3+b^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^2}+\frac{b^3-a^3}{a^2+ab+b^2}=\frac{2a^3}{a^2+ab+b^3}+b-a\)
tương tự rồi cộng theo vế :
\(LHS\ge2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)
áp dụng bđt cô si
\(\frac{a^3}{a^2+ab+b^2}+\frac{a^2+ab+b^2}{9}+\frac{1}{3}\ge\frac{3a}{3}=a\)
tương tự rồi cộng theo vế
\(2\left(\frac{a^3}{a^2+ab+b^2}+...\right)\ge a+b+c-1-\frac{2\left(a^2+b^2+c^2+ab+bc+ca\right)}{9}\)
\(\ge\frac{2\left(9-a^2-b^2-c^2-ab-bc-ca\right)}{9}\)
đến đây chịu :)))))
Do \(abc=1\), nếu viết BĐT về dạng:
\(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Có lẽ bạn sẽ nhận ra ngay. Một bài toán vô cùng quen thuộc.
Chắc với bài toán này thì bạn ko cần lời giải nữa, nó có ở khắp mọi nơi.
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)
Ta viết lại bất đẳng thức cần chứng mình là:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Xét: \(f\left(a\right)=a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\)
Ta thấy nếu \(bc-b-c\ge0\)khi đó ta luôn có \(f\left(a\right)\ge0\)hay:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Bây giờ xét trường hợp sau: \(bc-b-c\le0\)
Khi đó ta có:\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\)
Mà số hạng từ bậc 2 là số dương để \(f\left(a\right)\ge0\)thì ta phải chỉ ra được:
\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\le0\)
Hay \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Để ý \(bc-b-c\le0\)ta được \(\left(b-1\right)\left(c-1\right)\le1\)lúc này khả năng xảy ra các trường hợp sau:
- Cả \(\left(b-1\right);\left(c-1\right)\)cùng nhỏ hơn 1 hay cả b,c nhỏ hơn 2 và theo bất đẳng thức Cô si ta được:
\(b\left(2-b\right)\le\frac{\left(b+2-b\right)^2}{4}=1;c\left(2-c\right)\le\frac{\left(c+2-c\right)^2}{4}=1\)
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le1\)nên ta có \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Trong 2 số \(\left(b-1\right);\left(c-1\right)\)có một số lớn hơn 1 và một số nhỏ hơn 1 khi đó trong b,c có số lớn hơn hoặc nhỏ hơn 2
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le0\Leftrightarrow bc\left(b-2\right)\left(c-2\right)-1\le0\)
Vậy cả 2 khả năng đều cho \(\Delta_a\le0\)nên bất đẳng thức đã được chứng minh. Bài toán đã được chứng mình xong.
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)
Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)
Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)
\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)
*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)
\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)
Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*
*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị
Tuyệt quá,
Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)
có hằng số k tốt nhất là 10.
Tức là bài toán này đúng với mọi \(k\le10\)!
Đặt \(2^a=x;2^b=y;2^c=z\left(x,y,z>0\right)\)
=>\(xyz=2^{a+b+c}=1\)
Khi đó ĐPCM trở thành
\(x^3+y^3+z^3\ge x+y+z\)
Cosi \(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z\)
=> \(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\)
Mà \(\)\(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> \(x^3+y^3+z^3\ge x+y+z\)(ĐPCM)
Dấu bằng xảy ra khi x=y=z=1=> \(a=b=c=0\)
Trần Phúc Khang hình như chỗ \(x+y+z\ge3\)\(\Rightarrow\)\(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\) ngược dấu đó anh
Cần chứng minh: \(x^3+y^3+z^3\ge x+y+z\)
\(x^3+y^3+z^3\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{\left(x+y+z\right)^3}{9}\)
Mà \(x+y+z=2^a+2^b+2^c\ge3\sqrt[3]{2^{a+b+c}}=3\)\(\Leftrightarrow\)\(\left(x+y+z\right)^2\ge9\)
\(\Leftrightarrow\)\(x+y+z\le\frac{\left(x+y+z\right)^3}{9}\le x^3+y^3+z^3\) đpcm
sai thì mn góp ý ạ