K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

Ta có: \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)

Khi đó:

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}\)

\(=\frac{a\left(a+c\right)+2ac}{2a\left(a+c\right)-2ac}+\frac{c\left(a+c\right)+2ac}{2c\left(a+c\right)-2ac}\)

\(=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}=\frac{a^2}{2a^2}+\frac{3ac}{2a^2}+\frac{c^2}{2c^2}+\frac{3ac}{2c^2}\)

\(=\frac{1}{2}+\frac{3c}{2a}+\frac{1}{2}+\frac{3a}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\)

\(\ge1+\frac{3}{2}\cdot2\sqrt{\frac{a}{c}\cdot\frac{c}{a}}=1+3=4\) (Cauchy)

Dấu "=" xảy ra khi: \(a=b=c\)

6 tháng 4 2017

từ cái đã cho suy ra được \(\frac{2a-b}{ab}=\frac{1}{c}\Rightarrow2a-b=\frac{ab}{c}\)

Chứng minh tương tự =>2c-b=bc/a

Đặt \(M=\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{c\left(a+b\right)}{ab}+\frac{a\left(b+c\right)}{bc}\)

\(=c\left(\frac{1}{a}+\frac{1}{b}\right)+a\left(\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)Cái này tự chứng minh nhé

Dấu = xảy ra khi a=b=c

13 tháng 12 2017

ta có \(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Rightarrow b=\frac{2ac}{a+c}\)

thay b vào\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}\)

                                                  \(=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+6ac}{2ac}=4\)

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

5 tháng 6 2019

#)Bạn tham khảo câu ngay dưới câu hỏi của bạn nhé ^^

5 tháng 6 2019

tham khảo nhé :)

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)\(\Leftrightarrow\frac{a+c}{ac}=\frac{2}{b}\)\(\Leftrightarrow b=\frac{2ac}{a+c}\)

Ta có : \(\frac{a+b}{2a-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}=\frac{a\left(a+3c\right)}{2a^2}=\frac{a+3c}{2a}\)

tương tự : \(\frac{b+c}{2c-b}=\frac{c+3a}{2c}\)

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}=\frac{a+3c}{2a}+\frac{c+3a}{2c}=\frac{2ac+3\left(a^2+c^2\right)}{2ac}\ge\frac{2ac+3.2ac}{2ac}=\frac{8ac}{2ac}=4\)

7 tháng 6 2019

\(\frac{a+c}{ac}=\frac{2}{b}\) => \(b=\frac{2ac}{a+c}\) thay vào BĐT cần chứng minh, ta được:

\(\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{c+\frac{2ac}{a+c}}{2c-\frac{2ac}{a+c}}=\frac{a^2+3ac}{2a^2}+\frac{c^2+3ac}{2c^2}\)

\(=\frac{2a^2c^2+3a^3c+3ac^3}{2a^2c^2}\ge4\)

<=> 3a3c-6a2c2+3ac3 ≥ 0

<=> 3ac(a-c)2 ≥ 0 luôn đúng ∀ a,c > 0

Vậy BĐT được chứng minh, đẳng thức xảy ra khi và chỉ khi a=c; b≠0

Trước hết ta chứng minh các bđt : \(a^7+b^7\ge a^2b^2\left(a^3+b^3\right)\left(1\right)\)

Thật vậy:

\(\left(1\right)\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)\ge0\)(luôn đúng)

Lại có : \(a^3+b^3+1\ge ab\left(a+b+1\right)\)

\(\Leftrightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)

mà \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+1\right)\)(luôn đúng)

Áp dụng các bđt trên vào bài toán ta có

 ∑\(\frac{a^2b^2}{a^7+a^2b^2+b^7}\le\)\(\frac{a^2b^2}{a^3b^3\left(a+b+c\right)}\le\)\(\frac{a+b+c}{a+b+c}=1\)

Bất đẳng thức được chứng minh

Dấu "=" xảy ra khi a=b=c=1

28 tháng 2 2020

Em xem lại dòng thứ 4 và giải thích lại giúp cô với! ko đúng hoặc bị nhầm

21 tháng 3 2017

Bài này chả khó với lại đầy người đăng rồi

Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)

Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 3 2017

Đẳng thức xảy ra khi a = b = c = 1/3

Bài này không khó! Sao lại được vào câu hỏi hay?

7 tháng 5 2021

Ta có: 

\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)

Tương tự CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1}\) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\cdot1=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

7 tháng 5 2021

A=\(\frac{1}{a^2+2b^2+3}\)+\(\frac{1}{b^2+2c^2+3}\)+\(\frac{1}{c^2+2a^2+3}\)

ta có: \(\frac{1}{a^2+2b^2+3}\)=\(\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\)\(\le\)\(\frac{1}{2\left(ab+b+1\right)}\)

vì : a2+b2\(\ge\)2\(\sqrt{a^2b^2}\)=2ab

b2+1\(\ge\)2\(\sqrt{b^2x1}\)=2b

cmtt => A\(\le\)\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{1}{bc+c+1}\)+\(\frac{1}{ca+a+1}\))

=\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab^2c+abc+ab}\)+\(\frac{b}{cba+ab+b}\))

=\(\frac{1}{2}\)x (\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab+b+1}\)+\(\frac{b}{ab+b+1}\))=\(\frac{1}{2}\)x\(\frac{ab+b+1}{ab+b+1}\)=\(\frac{1}{2}\)

dấu "=" xảy ra <=> a=b=c=1

AH
Akai Haruma
Giáo viên
16 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Ngo Hiệu - Toán lớp 9 | Học trực tuyến