\(a\ge b\ge c\)

cm \(9ab\ge\le...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2016

\(\left(a+b+c\right)^2-9ab\le\left(a+b+c\right)^2-9a^2=\left(a+b+c-3a\right)\left(a+b+c+3a\right)=\left(b+c-2a\right)\left(4a+b+c\right)\)

Vì \(a\ge b\ge c\Leftrightarrow b+c-2a\le0\)

\(\Rightarrow\left(a+b+c\right)^2-9ab\le0\)=> dpcm

29 tháng 3 2020

ta có \(a\ge b\ge c\)

zì \(c\le b\)nên \(\left(a+b+c\right)^2\le\left(a+2b\right)^2\)

do zậy ta chỉ cần chứng minh \(9ab\ge\left(a+2b\right)^2\)

tương đương zới \(a^2-5ab+4b^2\le0\Leftrightarrow\left(a-b\right)\left(a-4b\right)\le0\)

zì \(a\ge b\)zà theo bất đẳng thức tam giác có \(a< b+c\le2b\le4b\)nên điều trên luôn đúng

zậy bất đẳng thức đc CM . dấu "=" xảy ra khi zà chỉ khi a=b=c hay tam giác ABC đều

3 tháng 11 2018

Câu a : \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow\left(a-b\right)^2\ge0\)

16 tháng 11 2022

a: =>2a^2+2b^2>=a^2+2ab+b^2

=>a^2-2ab+b^2>=0

=>(a-b)^2>=0(luôn đúng)

c: =>3a^2+3b^2+3c^2>=a^2+b^2+c^2+2ab+2bc+2ac

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

23 tháng 5 2020

help me !!!!!!

23 tháng 5 2020

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

29 tháng 9 2018

Trả lời:

a. Áp dụng BĐT Cô-si: x + y\(\ge\) \(2\sqrt{xy}\) (với x,y\(\ge\)0)

Ta có: a + b\(\ge\)\(2\sqrt{ab}\)

b+c\(\ge\)\(2\sqrt{bc}\)

c+a\(\ge\)\(2\sqrt{ca}\)

\(\Rightarrow\) (a+b)(b+c)(c+a) \(\ge\)\(8\sqrt{a^2b^2c^2}\)= 8abc (đpcm)

b. Áp dụng BĐT Cô-si: \(\sqrt{ab}\)\(\le\)\(\dfrac{a+b}{2}\) ( với a,b\(\ge\)0)

Ta có: \(\sqrt{3a\left(a+2b\right)}\)\(\le\)\(\dfrac{3a+a+2b}{2}\)=\(\dfrac{4a+2b}{2}\)=2a+b

\(\Rightarrow\) \(a\sqrt{3a\left(a+2b\right)}\)\(\le\)a(2a+b) = 2a2+ab

CMTT: \(b\sqrt{3b\left(b+2a\right)}\)\(\le\)b(2b+a) = 2b2+ab

\(\rightarrow\)\(a\sqrt{3a\left(a+2b\right)}\)+\(b\sqrt{3b\left(2b+a\right)}\)\(\le\) 2a2+ab+2b2+ab

= 2(a2+b2)+2ab =6(đpcm)

c. Áp dụng BĐT Cô-si với 3 số a+b; b+c;c+a

Ta có: (a+b)(b+c)(c+a)\(\le\)\(\left(\dfrac{2\left(a+b+c\right)}{3}\right)^3\)

\(\Leftrightarrow\) 1 \(\le\) \(\dfrac{8}{27}\left(a+b+c\right)^3\)

\(\Leftrightarrow\) (a+b+c)3 \(\ge\) \(\dfrac{8}{27}\)

\(\Leftrightarrow\) a+b+c \(\ge\) \(\dfrac{3}{2}\) (1)

Lại có: (a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) -abc

\(\Leftrightarrow\) 1= (a+b+c)(ab+bc+ca) - abc

\(\Leftrightarrow\) ab+bc+ca = \(\dfrac{1+abc}{a+b+c}\) (2)

Theo câu a. (a+b)(b+c)(c+a) \(\ge\) 8abc

\(\Leftrightarrow\) 1 \(\ge\) 8abc

\(\Leftrightarrow\) abc \(\le\)\(\dfrac{1}{8}\) (3)

Từ (1),(3) kết hợp với (2)

\(\Rightarrow\) ab+bc+ca \(\le\) \(\dfrac{1+\dfrac{1}{8}}{\dfrac{3}{2}}\) = \(\dfrac{3}{4}\) (đpcm)

14 tháng 1 2018

bạn hỏi cái j z

10 tháng 7 2019

Bài 1:Thêm đk a > b > 0

\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.

Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)

Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)

\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))

Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.

Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)

Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0

10 tháng 7 2019

Dự đoán điểm rơi tại a = 1; b = 1/2

Em nghĩ ra rồi nhưng ko chắc đâu.

Bài 3: Dễ thấy b > 0 => a > b > 0

Trước tiên cần giảm bậc cái đã:D

\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)

Đẳng thức xảy ra khi a = 1 (1)

Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:

\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)

Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)

Ta có đpcm.