Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)
\(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)
nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)
vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)
tương tự với mấy cái kia nhân vaò và ta có
\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)
=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)
=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)
=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4
B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)
=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)
=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=> \(ab+bc+ca-abc\le\frac{7}{27}\)
=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)
Ta có a+b+c=1;a;b;c>0 nên
P=a3+b3+c3+3abc
=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc
=1-3abc-3∑ab(a+b)
=1-3abc-3∑ab(1-c)
=1-3(ab+bc+ca)+6abc
Vì a;b;c là 3 cạnh của một tam giác nên
b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1
Nên (2a-1)(2b-1)(2c-1)<0
<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0
=>4[ab+bc+ca-2abc]>1
=>P<1/4
Ta có:
(a+b-c)(b+c-a)(c+a-b)=
\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc
=>(1-2a)(1-2b)(1-2c)≤abc
=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)
Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)
trời mãi ms xong
4. Ta có: \(a+b+c=6abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow xy+yz+zx=6\)
Lại có: \(\frac{bc}{a^3\left(c+2b\right)}=\frac{1}{a^3\frac{c+2b}{bc}}=\frac{\frac{1}{a^3}}{\frac{1}{b}+\frac{2}{c}}=\frac{x^3}{y+2z}\)
Tương tự suy ra:
\(S=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}\ge\frac{xy+yz+zx}{3}=2\)
Dấu = xảy ra khi \(x=y=z=\sqrt{2}\Rightarrow a=b=c=\frac{1}{\sqrt{2}}\)
Áp dungj BĐt Cauchy - Schwarz :
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a}\)
Cộng theo vế và thu gọn ta được :
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có : đpcm
Dấu " = " xảy ra khi \(a=b=c\)
Ta có
\(P=\frac{a+b+c}{2}\Rightarrow2p=a+b+c\)
áp dụng bđt Cauchy-Schwarz ta có
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{a+b+c-a-b}=\frac{4}{c}\left(1\right)\)
C/m tương tự ta có
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a}\left(2\right)\)
\(\frac{1}{p-a}+\frac{1}{p-c}\ge\frac{4}{b}\left(3\right)\)
Cộng vế theo vế (1) (2) và (3) => đpcm