K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{abc^2}{ab}}=2c\)

Tương tự và cộng lại có đpcm

Dấu "=" xảy ra khi \(a=b=c\) hay tam giác đều

10 tháng 3 2016

mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó 
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c) 
Trước hết ta xét bất đẳng thức sau với x,y >0 
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y) 
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y) 
Áp dụng cho bài toán ta có 
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b) 
bc/(b+c) ≥¼(c+d) 
ac/(a+c)≥¼(a+c) 
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c) 
Nếu bạn cho a+b+c=m thì ta có mình A=m/2 

25 tháng 3 2018

  Áp dụng BĐT côsi ta có: 

a² + bc ≥ 2.a√(bc) 

<=> 1/(a² + bc) ≤ 1/(2a√(bc)) -------------(1) 

tương tự vậy: 

1/(b² + ac) ≤ 1/(2b√(ac)) -------------------(2) 

1/(c² + ab) ≤ 1/(2c√(ab)) -------------------(3) 

lấy (1) + (2) + (3) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ 1/(2a√(bc)) + 1/(2b√(ac)) + 1/(2c√(ab)) 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ √(bc)/2abc + √(ac)/2abc + √(ab)/2abc 

<=>1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ [√(bc) + √(ac) + √(ab) ]/2abc (!) 

Ta chứng minh bổ đề: 

√(ab) + √(bc) + √(ac) ≤ a + b + c 

thật vậy, áp dụng BĐT côsi ta được: 

a + b ≥ 2√(ab) --- (*) 

a + c ≥ 2√(ac) --- (**) 

b + c ≥ 2√(bc) --- (***) 

lấy (*) + (**) + (***) => 2(a + b + c) ≥ 2.[ √(bc) + √(ac) + √(ab) ] 

<=> √(bc) + √(ac) + √(ab) ≤ a + b + c (@) 

từ (!) và (@) 

=> 1/(a² + bc) + 1/(b² + ac) + 1/(c² + ab) ≤ (a + b + c)/2abc ( Đpcm )

15 tháng 7 2020

Áp dụng AM - GM:

\(\frac{1}{a^2+bc}\le\frac{1}{2a\sqrt{bc}};\frac{1}{b^2+ac}\le\frac{1}{2b\sqrt{ca}};\frac{1}{c^2+ab}\le\frac{1}{2c\sqrt{ab}}\)

Khi đó:

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ca}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{a+b+c}{2abc}\)

23 tháng 10 2018

Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!

23 tháng 10 2018

bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là

Đáp án đề thi hsg toán 9 huyện Đức Thọ năm  học 2018-2019 Đây là bài cuối của đề ak!

18 tháng 12 2016

Cauchy ở mẫu \(a^2+bc\ge2a\sqrt{bc}\)

Vậy vế trái \(\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\)

Và lượng trên tử bé hơn bằng \(ab+bc+ca\)

18 tháng 12 2016

Mình đánh nhầm, dòng cuối cùng là \(a+b+c\)

2 tháng 9 2016

Vì a,b,c là ba cạnh của tam giác nên \(\begin{cases}a+b>c\\b+c>a\\a+c>b\end{cases}\) \(\Rightarrow\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}\)

do đó các số \(\frac{a^2}{b+c-a},\frac{b^2}{a+c-b},\frac{c^2}{a+b-c}\) là các số dương.

Áp dụng bđt  \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) được

\(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)-\left(a+b+c\right)}=\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

 

2 tháng 9 2016

chứng minh hộ mình bất đẳng thức được không