Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b>c;b+c>a;c+a>b\\a+b;b+c;c+a< a+b+c\end{cases}}\)
Ta có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+c+a+c}=\frac{2}{2\left(a+c\right)}=\frac{1}{a+c}\)
Chứng minh tương tự , ta được: \(\frac{1}{b+c}+\frac{1}{c+a}>\frac{1}{a+b}\)
\(\frac{1}{c+a}+\frac{1}{a+b}>\frac{1}{b+c}\)
\(\Rightarrowđpcm\)
Ta có a + b > c ; b + c > a ; a + c > b
\(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{a+b+c}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
Vậy ...
Ta có : a+b > c , b+c > a , c+a > b
Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)
Vậy ta có đpcm
Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:
\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\) (1)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:
\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\) (2)
Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:
\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\) (3)
Từ (1), (2) và (3)
\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))
Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều
Cho a,b,c là độ dài ba cạnh của tam giác thỏa mãn (1+b/a)(1+c/b)(1+a/c)=8.Chứng minh tam giác đó đều
\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)
Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b
(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c
(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a
=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)
=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8
Dấu = xảy ra <=> a = b = c <=> Tam giác đều
CM bất đảng thức :
\(a+b\ge2\sqrt{ab}\)
XH : a + b - 2\(\sqrt{ab}=\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Áp dụng BĐT : ...