K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 9 2019

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+3abc-c^3\ge0\)

\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ac+bc\right)-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ac+bc\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}+c^2+ac+bc\right]\ge0\) (1)

Do a; b; c là độ dài 3 cạnh của 1 tam giác nên \(a+b>c\Rightarrow a+b-c>0\)

\(\Rightarrow\left(1\right)\) luôn đúng

Nhưng dấu "=" ko xảy ra nên BĐT đã cho bị sai :(

24 tháng 9 2019

\(a^3+b^3+3abc\ge c^3\)

\(\Leftrightarrow a^3+b^3+3abc-c^3\ge0\)

\(\Leftrightarrow a^3+b^3+3a^2b+3ab^2+3abc-3a^2b-3ab^2-c^3\ge0\)

\(\Leftrightarrow\left(a+b\right)^3-c^3-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2+2ab+ca+bc\right)-3ab\left(a+b-c\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a^2+b^2+c^2-ab+ca+bc\right)\ge0\)

\(\Leftrightarrow\left(a+b-c\right)\cdot\frac{1}{2}\cdot\left[\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2\right]\ge0\)

( luôn đúng với \(a;b;c\) là 3 cạnh tam giác )

Dấu "=" xảy ra \(\Leftrightarrow\left[{}\begin{matrix}a+b=c\\\left\{{}\begin{matrix}a=b\\a=-c;b=-c\end{matrix}\right.\end{matrix}\right.\)

\(a;b;c>0\Leftrightarrow a+b=c\)

27 tháng 9 2020

Theo BĐT tam giác có :

\(a+b>c\)

\(\rightarrow\left(a+b\right)^3>c^3\)

\(\rightarrow a^3+b^3+3ab.\left(a+b\right)>c^3\)

\(\rightarrow a^3+b^3+3ab.c>c^3\)

4 tháng 6 2018

Áp dụng BĐT AM-GM ta có:

\(VT=\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)

\(\ge3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\)

Cần chứng minh \(3\sqrt[3]{\frac{abc}{\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)}}\ge3\)

\(\Leftrightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\le abc\)

Ta có: \(\left(a+b-c\right)\left(b+c-a\right)\le b^2\)

Tương tự nhân theo vế ta có DPCM

21 tháng 2 2019

:https://youtu.be/cs8x53kQFN4

21 tháng 2 2019

Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)

\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Áp dụng BĐT AM-GM ta có:

\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)

Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)

26 tháng 9 2017

ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)

              \(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)

nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)

vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)

tương tự với mấy cái kia nhân vaò và ta có 

\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)

=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)

=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)

=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4

B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)

=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)

=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=> \(ab+bc+ca-abc\le\frac{7}{27}\)

=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)

26 tháng 9 2017

Ta có a+b+c=1;a;b;c>0 nên

P=a3+b3+c3+3abc

=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc

=1-3abc-3∑ab(a+b)

=1-3abc-3∑ab(1-c)

=1-3(ab+bc+ca)+6abc

Vì a;b;c là 3 cạnh của một tam giác nên

b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1

Nên (2a-1)(2b-1)(2c-1)<0

<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0

=>4[ab+bc+ca-2abc]>1

=>P<1/4

Ta có:

(a+b-c)(b+c-a)(c+a-b)=

\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc

=>(1-2a)(1-2b)(1-2c)≤abc

=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)

=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)

Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

trời mãi ms xong

30 tháng 12 2015

\(\left(a+b-c\right)^3>0\Leftrightarrow\left(a+b\right)^3-c^3-3\left(a+b\right)c\left(a+b-c\right)>0\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-c\left(a+b-c\right)\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[ab-ca-cb+c^2\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]>c^3\)

\(\Leftrightarrow a^3+b^3+3\left(a+b\right)\left(a-c\right)\left(b-c\right)>c^3\)

Mặt khác : \(abc\ge\left(a+b\right)\left(a-c\right)\left(b-c\right)\)( chứng minh hộ mình cái )

=> dpcm

30 tháng 12 2015

xin lỗi em mới học lớp 6 vô chtt nhé