Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4ab+8bc+6ca=a\left(b+c\right)+3b\left(a+c\right)+5c\left(a+b\right)\)
\(=a\left(3-a\right)+3b\left(3-b\right)+5c\left(3-c\right)\)
\(=\dfrac{81}{4}-\left[\left(a-\dfrac{3}{2}\right)^2+3\left(b-\dfrac{3}{2}\right)^2+5\left(c-\dfrac{3}{2}\right)^2\right]\)
Đặt \(x=\left|a-\dfrac{3}{2}\right|;y=\left|b-\dfrac{3}{2}\right|;z=\left|c-\dfrac{3}{2}\right|\)
\(\Rightarrow x+y+z\ge\left|a+b+c-\dfrac{9}{2}\right|=\dfrac{3}{2}\)
Khi đó \(A=\dfrac{81}{4}-\left(x^2+3y^2+5z^2\right)\)
Áp dụng bđt bunhiacopxki: \(\left(x^2+3y^2+5z^2\right)\left(\dfrac{45^2}{46^2}+\dfrac{3.15^2}{46^2}+\dfrac{5.9^2}{46^2}\right)\ge\left(\dfrac{45}{46}x+\dfrac{45}{46}y+\dfrac{45}{46}z\right)^2\ge\left(\dfrac{135}{92}\right)^2\)
\(\Leftrightarrow x^2+3y^2+5z^2\ge\dfrac{135}{92}\)
\(\Rightarrow A\le\dfrac{81}{4}-\dfrac{135}{92}=\dfrac{432}{23}\)
Dấu = xảy ra\(\Leftrightarrow x=3y=5z\) và \(x+y+z=\dfrac{3}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{45}{46}\\y=\dfrac{15}{46}\\z=\dfrac{9}{46}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{12}{23}\\b=\dfrac{27}{23}\\c=\dfrac{30}{23}\end{matrix}\right.\)
Vậy...