Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}=\Sigma_{cyc}\frac{a^2+bc}{\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}}\)
Ta lại có: \(\sqrt[3]{\left(a^2b+b^2c\right)\left(bc^2+ca^2\right)\left(c^2a+ab^2\right)}\le\frac{\left(a^2b+b^2c\right)+\left(bc^2+ca^2\right)+\left(c^2a+ab^2\right)}{3}=\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{\Sigma_{cyc}\left(a^2+bc\right)}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{a^2+b^2+c^2+ab+bc+ca}{\frac{1}{3}\Sigma_{cyc}\left(ab\left(a+b\right)\right)}\)
Nhận thấy: \(A=\left(a+b+c\right)\left(a^2+b^2+c^2+ab+bc+ca\right)=a^3+b^3+c^3+3abc+2\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
Theo Schur: \(a^3+b^3+c^3+3abc\ge\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Leftrightarrow A\ge3\Sigma_{cyc}\left(ab\left(a+b\right)\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}\ge\frac{3\Sigma_{cyc}\left(ab\left(a+b\right)\right)}{\frac{1}{3}\left(a+b+c\right)\Sigma_{cyc}\left(ab\left(a+b\right)\right)}=\frac{9}{a+b+c}\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}$
$\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}$
Cộng theo vế và thu gọn:
$\frac{a+1}{a+1}+\frac{b+1}{b+1}+\frac{c+1}{c+1}\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Leftrightarrow 3\geq \frac{3(1+\sqrt[3]{abc})}{\sqrt[3]{(a+1)(b+1)(c+1)}}$
$\Rightarrow (a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3$
Ta có đpcm.
Bài 2:
$a^3+a^3+a^3+a^3+b^3+c^3\geq 6\sqrt[6]{a^{12}b^3c^3}=6a^2\sqrt{bc}$
$b^3+b^3+b^3+b^3+a^3+c^3\geq 6b^2\sqrt{ac}$
$c^3+c^3+c^3+c^3+a^3+b^3\geq 6c^2\sqrt{ab}$
Cộng theo vế và rút gọn thu được:
$a^3+b^3+c^3\geq a^2\sqrt{bc}+b^2\sqrt{ac}+c^2\sqrt{ab}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Lợi dụng BĐT Cauchy-Schwarz tao cso:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)
Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:
\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)
Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)
Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\le\sqrt{9}=3\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)
\(=4\left(a^2+b^2+c^2\right)=VP^2\)
Xảy ra khi \(a=b=c=1\)
\(P=\dfrac{\sqrt{a-2}}{a}+\dfrac{\sqrt[3]{b-3}}{b}+\dfrac{\sqrt[4]{c-6}}{c}\)
\(=\dfrac{\sqrt{\left(a-2\right).2}}{a\sqrt{2}}+\dfrac{\sqrt[3]{\left(b-3\right).\dfrac{3}{2}.\dfrac{3}{2}}}{b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{\sqrt[4]{\left(c-6\right).2.2.2}}{c\sqrt[3]{8}}\)
\(\le\dfrac{a-2+2}{2a\sqrt{2}}+\dfrac{b-3+\dfrac{3}{2}+\dfrac{3}{2}}{3b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{c-6+2+2+2}{4c\sqrt[4]{8}}\)
\(=\dfrac{a}{2a\sqrt{2}}+\dfrac{b}{3b\sqrt[3]{\dfrac{9}{4}}}+\dfrac{c}{4c\sqrt[4]{8}}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{\dfrac{9}{4}}}+\dfrac{1}{4\sqrt[4]{8}}\)
Vậy \(P_{max}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{\dfrac{9}{4}}}+\dfrac{1}{4\sqrt[4]{8}}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a-2=2\\b-3=\dfrac{3}{2}\\c-6=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=\dfrac{9}{2}\\c=8\end{matrix}\right.\)
\(P=\dfrac{bc\sqrt{a-2}+ac\sqrt[3]{b-3}+ab\sqrt[4]{c-6}}{abc}\)
\(=\dfrac{\sqrt{a-2}}{a}+\dfrac{\sqrt[3]{b-3}}{b}+\dfrac{\sqrt[4]{c-6}}{c}\)
Áp dụng BĐT AM-GM ta có:
\(=\dfrac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\dfrac{\sqrt[3]{2\left(b-3\right)}}{\sqrt[3]{2}b}+\dfrac{\sqrt[4]{2\left(c-6\right)}}{\sqrt[4]{2}c}\)
\(\le\dfrac{\dfrac{2+a-2}{2}}{\sqrt{2}a}+\dfrac{\dfrac{2+b-3+1}{3}}{\sqrt[3]{2}b}+\dfrac{\dfrac{2+c-6+1+1+1+1}{4}}{\sqrt[4]{2}c}\)
\(=\dfrac{\dfrac{a}{2}}{\sqrt{2}a}+\dfrac{\dfrac{b}{3}}{\sqrt[3]{2}b}+\dfrac{\dfrac{c}{4}}{\sqrt[4]{2}c}=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{3\sqrt[3]{2}}+\dfrac{1}{4\sqrt[4]{2}}\)