Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
Câu 2 :
\(x-y=7\)
\(\Rightarrow x=7+y\)
*)
\(B=\dfrac{3\left(7+y\right)-7}{2\left(7+y\right)+y}-\dfrac{3y+7}{2y+7+y}\)
\(=\dfrac{21+3y-7}{14+3y}-\dfrac{3y+7}{3y+7}\)
\(=\dfrac{14y+3y}{14y+3y}-1\)
\(=1-1\)
\(=0\)
Vậy B = 0
2/ Ta có :
\(B=\dfrac{3x-7}{2x+y}-\dfrac{3y+7}{2y+x}\)
\(=\dfrac{3x-\left(x-y\right)}{2x+y}-\dfrac{3y+\left(x-y\right)}{2y+x}\)
\(=\dfrac{3x-x+y}{2y+x}-\dfrac{3y+x-y}{2y+x}\)
\(=\dfrac{2x+y}{2x+y}-\dfrac{2y+x}{2y+x}\)
\(=1-1=0\)
Ta có :
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}:\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\cdot\dfrac{2}{1}\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{b}{ab}+\dfrac{a}{ab}=\dfrac{2}{c}\)
\(\Rightarrow\dfrac{a+b}{ab}=\dfrac{2}{c}\)
\(\Rightarrow2ab=\left(a+b\right)c\)
\(\Rightarrow ab+ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Vậy \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
Từ \(a\left(y+z\right)=b\left(z+x\right)\), áp dụng t/c dãy tỉ số bằng nhau ta được
\(\dfrac{z+x}{a}=\dfrac{y+z}{b}=\dfrac{z+x-y-z}{a-b}=\dfrac{x-y}{a-b}\)
\(\Rightarrow\dfrac{z+x}{a}.\dfrac{1}{c}=\dfrac{y+z}{b}.\dfrac{1}{c}=\dfrac{x-y}{c\left(a-b\right)}\)(1)
Tương tự : từ \(b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{z+x}{c}=\dfrac{x+y}{b}=\dfrac{z+x-x-y}{c-b}=\dfrac{y-z}{c-b}\)\(\Rightarrow\dfrac{z+x}{c}.\dfrac{1}{a}=\dfrac{x+y}{b}.\dfrac{1}{a}=\dfrac{y-z}{c-b}.\dfrac{1}{a}\)
\(\Rightarrow\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{y-z}{a\left(c-b\right)}\)(2)
từ \(a\left(y+z\right)=c\left(x+y\right)\)
\(\Rightarrow\dfrac{y+z}{c}=\dfrac{x+y}{a}=\dfrac{y+z-x-y}{c-a}=\dfrac{z-x}{c-a}\)\(\Rightarrow\dfrac{y+z}{c}.\dfrac{1}{b}=\dfrac{x+y}{a}.\dfrac{1}{b}=\dfrac{z-x}{c-a}.\dfrac{1}{b}\)
\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{x+y}{ab}=\dfrac{z-x}{b\left(c-a\right)}\)(3)
Kết hợi (1);(2)(3) => ĐPCM
tik mik nha !!!
Ta có: a+b-c/c = b+c-a/a = c+a-b/b = a+b-c+b+c-a+c+a-b/c+a+b
= a+b+c/a+b+c = 1 (Áp dụng tính chất dãy tỉ số bằng nhau)
Trường hợp 1 : Nếu a+b+c = 0 => a=0; b=0 ; c=0 => P =1
Trường hợp 2: Nếu a+b+c khác 0 => a+b+c = 1
=> a+b = 1-c => b+c = 1-a
=> a+c = 1-b
Ta lại có:
1-c-c/c =1 => 1- 2c/c =1 => 1-2c = c => 1 = 3c=> c= 1/3
1-a-c/a = 1 => 1- 2a/a=1 => 1-2a =a => 1 = 3a => a= 1/3
1-b-b/b = 1 => 1-2b/b = 1 => 1-2b = b => 1= 3b => b= 1/3
=> P= (1+ 1/3 : 1/3). (1+ 1/3 : 1/3). ( 1+ 1/3 :1/3)
= 2 . 2. 2 =8
Vậy P = 1 hoặc = 8
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\frac{1}{c}:\frac{1}{2}=\frac{1}{a}+\frac{1}{b}\)
\(\frac{2}{c}=\frac{a+b}{ab}\)
\(\Rightarrow2ab=ac+bc\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a.\left(c-b\right)=b.\left(a-c\right)\)
\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\)( đpcm )
ta có a+b+c=0
=> a+b=-c ; a+c=-b ; b+c=-a
A=\(\left(1+\dfrac{a}{b}\right).\left(1+\dfrac{b}{c}\right).\left(1+\dfrac{c}{a}\right)=\dfrac{b+a}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\) mà b+a=-c ; b+c=-a;a+c=-b
=> A=\(\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}=\dfrac{-bca}{bca}=-1\)
Vậy A=-1