Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng ý nhé !!!
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(\frac{1}{abc}.3abc=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)
\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)
\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)
\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)
Xét \(a=b=c\) ta có :
\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)
GT không hợp lí
Theo định lí cosi 3 số
a^3+b^3+c^3>=3*canbacba(a^3*b^3*c^3)
<=> a^3+b^3+c^3>=3abc
dấu"=" khi a=b=c
trái Gt a,b,c đôi một khác nhau
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Ta có:
\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì a3+b3+c3=3abc và a+b+c khác 0
=>\(a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm = 0 <=> chúng đều = 0
\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)
Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
\(\)
Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)
\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)
\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)
Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)
\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)
Rồi tương tự các kiểu:v
Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)
\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))
Không phải dùng tới Cauchy-Schwarz:D
\(a\left(a^2-bc\right)+b\left(b^2-ca\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow a^3-abc+b^3-abc+c^3-abc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Mà \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow}a=b=c\)
Vậy \(P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
a, b, c đôi một khác nhau => a ≠ b ≠ c
a3 + b3 + c3 = 3abc
<=> a3 + b3 + c3 - 3abc = 0
<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
<=> ( a + b + c )( a2 + b2 + c2 + 2ab - ac - bc ) - 3ab( a + b + c ) = 0
<=> ( a + b + c )( a2 + b2 + c2 - ab - ac - bc ) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
I) \(a+b+c=0\Rightarrow\hept{\begin{cases}-a=b+c\\-b=a+c\\-c=a+b\end{cases}}\)
Xét các mẫu thức ta có :
1) a2 + b2 - c2 = a2 + ( b - c )( b + c ) = a2 - a( b + c ) = a2 - ab + ac = a( a - b + c ) = a( a + b + c - 2b ) = -2ab
TT : b2 + c2 - a2 = -2bc
c2 + a2 - b2 = -2ac
Thế vô A ta được :
\(A=\frac{-1}{2ab}+\frac{-1}{2bc}+\frac{-1}{2ac}=\frac{-c}{2abc}+\frac{-a}{2abc}+\frac{-b}{2abc}=\frac{-\left(a+b+c\right)}{2abc}=0\)
II) a2 + b2 + c2 - ab - ac - ab = 0
<=> 2(a2 + b2 + c2 - ab - ac - ab) = 2.0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2ab = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)( trái với đề bài )
=> A = 0