K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Ta có (a + b + c)3 = [(a + b) + c]3 = (a + b)3 + 3(a + b)2c + 3(a + b)c2 + c3 

 = a3 + b3 + 3ab(a + b) + 3(a + b)2c + 3(a + b)c2 + c3

= a3 + b3 + c3 + 3(a + b)[ab + (a + b)c + c2]

= a3 + b3 + c3 + 3(a + b)(ab + ac + bc + c2

= a3 + b3 + c3 + 3(a + b)(b + c)(a + c) 

\(\Rightarrow\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(vì a + b + c = a3 + b3 + c3 = 1) 

\(\Rightarrow\)a = -b hoặc b = -c hoặc c = -a

Khi a = -b thì c = 1

\(\Rightarrow\) A = 1

Tương tự khi b = -c thì a = 1 

\(\Rightarrow\) A = 1

khi a = -c thì b = 1

\(\Rightarrow A=1\)

Vậy A = 1 trong cả 3 trường hợp trên

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{b^3}{c+a}+\frac{c^3}{a+b}\)

\(=\frac{a^4}{ab+ac}+\frac{b^4}{cb+ba}+\frac{c^4}{ac+bc}\)

\(\ge\frac{\left(a^2+b^2+c\right)^2}{2\left(ab+bc+ca\right)}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{2\left(ab+bc+ca\right)}\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrowđpcm\)

17 tháng 11 2019

\(\frac{a^3}{b+c}+\frac{a^3}{b+c}+\frac{\left(b+c\right)^2}{8}\ge3\sqrt[3]{\frac{a^3}{b+c}.\frac{a^3}{b+c}.\frac{\left(b+c\right)^2}{8}}=\frac{3a^2}{2}\)

Rồi tương tự các kiểu:v

Suy ra \(2VT\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2}{8}\)

\(\ge\frac{3}{2}\left(a^2+b^2+c^2\right)-\frac{a^2+b^2+c^2}{2}=\left(a^2+b^2+c^2\right)\) (chú ý \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\))

Không phải dùng tới Cauchy-Schwarz:D

31 tháng 8 2020

Bài làm:

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

4 tháng 1 2016

nhầm làm lại nha ^^

(a+b+c)^2=a^2+b^2+c^2

=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2

=>2(ab+bc+ac)=0

=>ab+bc+ac=0

=>(ab+bc+ac)/abc=0

=>ab/abc+bc/abc+ac/abc=0

=>1/c+1/a+1/b=0

=> 1/a+1/b=-1/c

=> (1/a+1/b)^3=(-1/c)^3

=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3

=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0

=> 1/a^3+1/b^3+1/c^3-3/abc=0

=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)

 

4 tháng 1 2016

(a+b+c)^2=a^2+b^2+c^2

a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2

2(ab+bc+ac)=0

ab+bc+ac=0

(ab+bc+ac)/abc=0

ab/abc+bc/abc+ac/abc=0

1/c+1/a+1/b=0

=> 1/a+1/b=-1/c

=> (1/a+1/b)^3=(-1/c)^3

=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3

=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0

=> 1/a^3+1/b^3+1/c^3=3/abc