\(\in\)Q thoã mãn: ab+bc+ca=2018

Chứng minh: \(\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Ta có:

\(\sqrt{\left(a^2+2018\right)\left(b^2+2018\right)\left(c^2+2018\right)}\)

\(=\sqrt{\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)}\)

Sau khi đặt nhân tử chung và gom lại ta được:

\(=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(c+b\right)}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Mà a,b,c thuộc Q

Nên \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

=> ĐPCM

10 tháng 8 2018

bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)

\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)

b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)

mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)

vậy \(Q^3>Q\)

10 tháng 8 2018

Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn

Hoàng Lê Bảo NgọcTrần Việt Linh

cứu tôi với

5 tháng 11 2018

a + b + c = 6

=> (a + b + c)2 = 36

<=> a2 + b2 + c2 + 2(ab + bc + ca) = 36

<=> a2 + b2 + c2 = 36 - 2.12 = 12

<=> a2 + b2 + c2 = ab + bc + ca

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> a = b = c

=> a = b = c = 2

P = (a - 3)2018 + (b - 3)2018 + (c - 3)2018 = (-1)2018 + (-1)2018 + (-1)2018 = 1 + 1 + 1 = 3

28 tháng 11 2019

Từ hệ phương trình \(\Rightarrow\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)=2\)

Ta có: \(\sqrt{x-2018}-\sqrt{x-2019}\le\sqrt{\left(x-2018\right)-\left(x-2019\right)}=1\) Dấu = xảy ra khi và chỉ khi x = 2019

Tương tự: \(\sqrt{y-2018}-\sqrt{y-2019}\le1\)

Dấu = xảy ra khi và chỉ khi y = 2019

Nên: \(\left(\sqrt{x-2018}-\sqrt{x-2019}\right)+\left(\sqrt{y-2018}-\sqrt{y-2019}\right)\le2\)

Dấu = xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

Kết luận nghiệm pt: \(\left\{{}\begin{matrix}x=2019\\y=2019\end{matrix}\right.\)

29 tháng 11 2021

sao tổng lại lớn hơn hiệu