Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chuẩn hóa \(a+b+c=3\)
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\dfrac{a^2+6a+9}{3\left(a^2-2a+3\right)}=\dfrac{1}{3}\left(1+\dfrac{8a+6}{\left(a-1\right)^2+2}\right)\le\dfrac{1}{3}\left(1+\dfrac{8a+6}{2}\right)\)
Tương tự và cộng lại:
\(VT\le\dfrac{1}{3}\left(3+\dfrac{8\left(a+b+c\right)+18}{2}\right)=8\) (đpcm)
\(P=\dfrac{\left(a^2+abc\right)^2}{a^2b^2+2abc^2}+\dfrac{\left(b^2+abc\right)^2}{b^2c^2+2a^2bc}+\dfrac{\left(c^2+abc\right)}{a^2c^2+2ab^2c}\)
\(P\ge\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)}=\dfrac{\left(a^2+b^2+c^2+3abc\right)^2}{\left(ab+bc+ca\right)^2}\)
\(P\ge\dfrac{\left[a^2+b^2+c^2+3abc\right]^2}{\left(ab+bc+ca\right)^2}\)
Do đó ta chỉ cần chứng minh \(\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge2\)
Ta có: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow3abc\ge4\left(ab+bc+ca\right)-9\)
\(\Rightarrow\dfrac{a^2+b^2+c^2+3abc}{ab+bc+ca}\ge\dfrac{a^2+b^2+c^2+4\left(ab+bc+ca\right)-9}{ab+bc+ca}\)
\(=\dfrac{\left(a+b+c\right)^2-9+2\left(ab+bc+ca\right)}{ab+bc+ca}=2\) (đpcm)
sai cơ bản rồi bạn ơi : a(a+bc)^2 không bằng dc (a^2+abc)^2
2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).
Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Đẳng thức xảy ra khi a = b; c = 0.
Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)
Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)
Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)
Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)
\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):
\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)
\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)
\(\ge2\left(xy+yz+zx\right)\)
Vậy (1) đúng. BĐT đã được chứng minh.
Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.
Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(
Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:
Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)
khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)
Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)
Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$
\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)
\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)
Nhức nhối mãi bài này vì nó làm lag hết máy
Giải
Đặt \(x=\dfrac{b+c}{a};y=\dfrac{c+a}{b};z=\dfrac{a+b}{c}\)
Ta phải chứng minh \(Σ\dfrac{\left(x+2\right)^2}{x^2+2}\le8\)
\(\LeftrightarrowΣ\dfrac{2x+1}{x^2+2}\le\dfrac{5}{2}\LeftrightarrowΣ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{1}{2}\)
Lại theo BĐT Cauchy-Schwarz ta có:
\(Σ\dfrac{\left(x-1\right)^2}{x^2+2}\ge\dfrac{\left(x+y+z-3\right)^2}{x^2+y^2+z^2+6}\)
Ta còn phải chứng minh
\(2\left(x^2+y^2+z^2+2xy+2yz+2xz-6x-6y-6z+9\right)\)\(\ge x^2+y^2+z^2+6\)
\(\Leftrightarrow x^2+y^2+z^2+4\left(xy+yz+xz\right)-12\left(x+y+z\right)+12\ge0\)
Bây giờ có \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\ge12\left(xyz\ge8\right)\)
Còn phải chứng minh \(\left(x+y+z\right)^2+24-12\left(x+y+z\right)+12\ge0\)
\(\Leftrightarrow\left(x+y+z-6\right)^2\ge0\) (luôn đúng)
Bởi vì BĐT là thuần nhất, ta có thể chuẩn hóa \(a+b+c=3\). Khi đó
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{a^2+6a+9}{3a^2-6a+9}=\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2+\left(a-1\right)^2}\right)\)
\(\le\dfrac{1}{3}\left(1+2\cdot\dfrac{4a+3}{2}\right)=\dfrac{4a+4}{3}\)
Tương tự ta cho 2 BĐT còn lại ta cũng có:
\(\dfrac{\left(2b+c+a\right)^2}{2b^2+\left(a+c\right)^2}\ge\dfrac{4b+4}{3};\dfrac{\left(2c+b+a\right)^2}{2c^2+\left(a+b\right)^2}\ge\dfrac{4c+4}{3}\)
Cộng theo vế 3 BĐT trên ta có:
\(Σ\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}\geΣ\left(4a+4\right)=8\)
Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp
Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)
\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)
\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)
Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:
\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Ta thực hiện phép đổi biến thì:
\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)
Đến đây là phần của bạn
:( Đại Ka ơi a up câu nào khó hơn đi :( :v
Solution:
Vế trái có tính thuần nhất theo 3 biến nên ta chuẩn hóa a+b+c=3.
Điểm rơi: a=b=c=1.
Khi đó:
\(A=Sigma\frac{\left(3+a\right)^2}{2a^2+\left(3-a\right)^2}\)(em ko biết kí hiệu tổng sigma ạ :v)
\(3A\Rightarrow Sigma\frac{\left(3+a\right)^2}{a^2-2a+3}\)
UCT :v
Ta cần tìm m và n sao cho
\(\frac{\left(3+a\right)^2}{a^2-2a+3}\le ma+n\) (Luôn đúng với 0<a<3)
Với điểm rơi a=1 ta có m+n=8 => n=8-m.
Ta tìm m sao cho: \(\frac{\left(3+a\right)^2}{a^2-2a+3}\le m\left(a-1\right)+8\) (luôn đúng với 0<a<3).
Đến đây giải ra ta tìm được m=4 và n=4
Ta dễ dàng cm được: \(\frac{\left(3+a\right)^2}{a^2-2a+3}\le4\left(a+1\right)\)(với o<a<3) ( cái này chứng minh tương đg) :v
Suy ra \(3A=Sigma\frac{\left(3+a\right)^2}{a^2-2a+3}\le4\left(a+b+c\right)=24\)
=> a<=8
Max A=8 <=> a=b=c=1
UCT => ez nha anh :)
\(1=\left(a+b+c\right)^4=\left(a^2+b^2+c^2+2\left(ab+bc+ca\right)\right)^2\)
Mặt khác áp dụng \(\left(x+y\right)^2\ge4xy\)
\(\left[\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\right]^2\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
\(\Rightarrow1\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\ge8\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Nên ta chỉ cần chứng minh:
\(\left(ab+bc+ca\right)^2\ge a^2b^2+b^2c^2+c^2a^2\)
\(\Leftrightarrow2abc\left(a+b+c\right)\ge0\) (hiển nhiên đúng)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;\dfrac{1}{2};\dfrac{1}{2}\right)\) và các hoán vị của chúng