Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)
=\(\frac{1}{abc}.\left(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\right)\)
=\(\frac{1}{a^5c+b^5c+abc}+\frac{1}{b^5a+c^5a+abc}+\frac{1}{c^5b+a^5b+abc}\)
\(\le\)\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\)
Ta có : a3+b3=(a+b)(a2-ab+b2)\(\ge\)ab(a+b) (cosi)
Tương tự ta được:
b3+c3\(\ge bc\left(b+c\right)\)
c3+a3\(\ge ca\left(c+a\right)\)
Như vậy \(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{c^5+a^5+ca}\)
\(\le\)\(\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)
=\(\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
=\(\frac{1}{a+b+c}.\left(\frac{a+b+c}{ab+bc+ca}\right)=\frac{1}{ab+bc+ca}\le1\)
Ta có a5 + b5 \(\ge\) a3b2 + a2b3 = a2b2 (a+b)
\(\Leftrightarrow\)a5 + b5 + ab \(\ge\) a2b2(a+b) + ab= ab[ab(a+b)+abc] = ab[ab(a+b+c)] = ab*\(\frac{abc\left(a+b+c\right)}{c}\) = ab* \(\frac{a+b+c}{c}\) (vì abc=1)
\(\Leftrightarrow\) \(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\cdot\frac{a+b+c}{c}}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\) (1)
Tương tự, ta có \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c}\)(2)
\(\frac{ca}{a^5+c^5+ca}\le\frac{b}{a+b+c}\)(3)
Ta cộng từng vế (1), (2), (3), ta được
\(\frac{ab}{a^5+b^5+ab}+\frac{bc}{b^5+c^5+bc}+\frac{ca}{a^5+c^5+ca}\le\frac{a+b+c}{a+b+c}=1\)
Vây ta được điều phài chứng minh
Với các số dương x; y ta có:
\(x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)\)
\(\Rightarrow x^5+y^5\ge xy\left(x+y\right).2xy-x^2y^2\left(x+y\right)=x^2y^2\left(x+y\right)\)
\(\Rightarrow P\le\frac{ab}{a^2b^2\left(a+b\right)+ab}+\frac{bc}{b^2c^2\left(b+c\right)+bc}+\frac{ca}{c^2a^2\left(c+a\right)+ca}\)
\(P\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)
\(P\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(a+c\right)+abc}\)
\(P\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)
Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)
Tương tự cộng lại suy ra \(VT\le1\)
Dấu = xảy ra khi a=b=c=1
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a^3-b^3\right)\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\)
\(\ge\left(a+b\right)^2a^2b^2\forall a,b>0\)
\(\Rightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left[ab\left(a+b\right)+1\right]}\)
\(=\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{bc}{b^5+c^5+bc}\ge\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\ge\frac{b}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Đẳng thức xảy ra khi \(a=b=c=1\)
x^5+y^5≥x^2.y^2(x+y)
x^5+y^5≥x^2.y^2(x+y)
ta có: x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−x.y^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2)x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−xy^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2). Vì (x−y)^2(x2−xy+y2)≥0(x−y)2(x^2−xy+y^2)≥0 nên ((x−y)^2(x^2−xy+y^2)+x^2y^2)≥x^2y^2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
x+y5≥x2.y2(x+y)x5+y5≥x2.y2(x+y)
thật vậy, ta có: x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2)x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2). Vì (x−y)2(x2−xy+y2)≥0(x−y)2(x2−xy+y2)≥0 nên ((x−y)2(x2−xy+y2)+x2y2)≥x2y2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
Ta có:\(a^5+ab+b^2\ge3a^2b\)
Tương tự ta có:
\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)
\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)
Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)
\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)
Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)
\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
Giả sử \(xy\le1\) thì \(z\ge1\)
Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)
\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)
Dấu = khi \(a=b=c=1\)
Từ \(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)
\(=\left(a+b\right)\left[a^2b^2+a^3\left(a-b\right)-b^3\left(a-b\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)\left(a^3-b^3\right)\right]\)
\(=\left(a+b\right)\left[a^2b^2+\left(a-b\right)^2\left(a^2+ab+b^2\right)\right]\ge\left(a+b\right)^2a^2b^2\)\(\forall a,b>0\)
\(\Leftrightarrow a^5+b^5+ab\ge ab\left[ab\left(a+b\right)+1\right]\)
\(\Leftrightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{ab\left(a+b\right)+1}=\frac{c}{a+b+c}\left(abc=1\right)\)
Tương tự ta có: \(\frac{bc}{b^5+c^5+bc}\le\frac{a}{a+b+c};\frac{ca}{c^5+a^5+ca}\le\frac{b}{a+b+c}\)
Cộng theo vế ta có: \(VT\le\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)
mk có cách giải khác Lyzimi, Thắng Nguyễn và Minh Triều xem thử nha :)
\(\forall x;y>0\) ta dễ dàng chứng minh được \(x^5+y^5\ge xy\left(x^3+y^3\right)\) và \(x^3+y^3\ge xy\left(x+y\right)\)
Đẳng thức xảy ra \(\Leftrightarrow\)\(x=y\)
(cái này để chứng minh bn thử biến đổi tương đương xem sao :)
Do đó \(a^5+b^5+ab\ge ab\left(a^3+b^3+1\right)\)
\(\Rightarrow\)\(\frac{ab}{a^5+b^5+ab}\le\frac{ab}{ab\left(a^3+b^3+1\right)}=\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)(1)
Chứng minh tương tự \(\frac{bc}{b^5+c^5+bc}\le\frac{1}{bc\left(a+b+c\right)}\) (2) và \(\frac{ca}{c^5+a^5+ca}\le\frac{1}{ca\left(a+b+c\right)}\) (3)
Cộng (1), (2) và (3) ta có \(VT\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}=1\)
Đẳng thức xảy ra \(\Leftrightarrow\)\(a=b=c=1\)