\(\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

\(VT=\left(a+\frac{1}{9b}+\frac{1}{9b}+...+\frac{1}{9b}\right)\left(b+\frac{1}{9c}+\frac{1}{9c}+...+\frac{1}{9c}\right)\left(c+\frac{1}{9a}+\frac{1}{9a}+...+\frac{1}{9a}\right)\)

Lưu ý: Đã tách các số \(\frac{1}{b};\frac{1}{c};\frac{1}{a}\)trong ngoặc thành 9 số hạng bằng nhau

Áp dụng AM-GM:

\(VT\ge10\sqrt[10]{a\left(\frac{1}{9b}\right)^9}.10\sqrt[10]{b\left(\frac{1}{9c}\right)^9}.10\sqrt[10]{c\left(\frac{1}{9a}\right)^9}\)

\(=10^3\sqrt[10]{abc\left(\frac{1}{9a}.\frac{1}{9b}.\frac{1}{9c}\right)^9}\)\(=10^3\sqrt[10]{\frac{abc}{\left(9^3\right)^9.\left(abc\right)^9}}\)\(=10^3\sqrt[10]{\frac{1}{9^{27}.a^8b^8c^8}}\)

\(=\frac{10^3}{\sqrt[10]{9^{27}.a^8b^8c^8}}\)\(=\frac{10^3}{\sqrt[10]{9^{15}.\left(3a\right)^8\left(3b\right)^8\left(3c\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(3a.3b.3c\right)^8}}\)

\(\ge\frac{10^3}{3^3\sqrt[10]{\left(\frac{3a+3b+3c}{3}\right)^8}}=\frac{10^3}{3^3\sqrt[10]{\left(\frac{3\left(a+b+c\right)}{3}\right)^8}}=\frac{10^3}{3^3}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

\(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

BĐT Cauchy cho 3 số dương: \(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow1\ge3\sqrt[3]{abc}\Leftrightarrow abc\le\frac{1}{27}\Leftrightarrow\frac{1}{abc}\ge27\)

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

BĐT Cauchy cho 2 số dương: \(abc+\frac{1}{729abc}\ge2\sqrt{abc.\frac{1}{27^2abc}}=\frac{2}{27}\)

Biến đổi A thêm 1 tí nữa: \(A=\left(abc+\frac{1}{729abc}\right)+\frac{728}{729}.\frac{1}{abc}+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+1\)

Thế toàn bộ các BĐT vừa tìm được ở trên vào A:

\(A\ge\frac{2}{27}+\frac{728}{729}.27+9+1=\frac{1000}{27}=\left(\frac{10}{3}\right)^2\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

24 tháng 5 2018

Bn thiếu đề nhé : \(DK:abc=1\)

Áp dụng BĐT Cauchy-Schwarz ta có :

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\)

Tương tự \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3}{4}b\)

Và .\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)

Cộng vế với vế của các bđt trên ta được :

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}+\frac{1}{4}\left(a+b+c\right)+\frac{3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)

\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) (ĐPCM)

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì

18 tháng 3 2020

Áp dụng BĐT Svacxo ta có :

\(\frac{1}{a^3\left(7b+3c\right)}+\frac{1}{b^3\left(7c+3a\right)}+\frac{1}{c^3\left(7a+3b\right)}=\frac{\frac{1}{a^2}}{7ab+7ac}+\frac{\frac{1}{b^2}}{7bc+3ab}+\frac{\frac{1}{c^2}}{7ac+3bc}\)

\(\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{10\left(ab+bc+ca\right)}=\frac{1}{10}.\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{ab+bc+ca}=\frac{1}{10}.\left(ab+bc+ca\right)\)

\(=\frac{1}{10}.\frac{ab+bc+ca}{abc}=\frac{1}{10}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(đpcm\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

15 tháng 10 2016

Áp dụng BĐT AM-GM ta có \(\frac{1^2}{a\left(a+b\right)}+\frac{1^2}{b\left(b+c\right)}+\frac{1^2}{c\left(c+a\right)}\ge\)

\(\ge\frac{\left(1+1+1\right)^2}{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}=\frac{9}{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}\ge\)

\(\ge\frac{9}{3.\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

15 tháng 10 2016

HÌNH NHƯ NGƯỢC DẦU RỒI THÌ PHẢI

1 tháng 12 2019

sai đề

1 tháng 12 2019

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)

Bn giúp mình vs ạ

4 tháng 9 2017

xin lỗi nhé bên trên do đánh nó không hiện nên tưởng không viết được , 

Cộng từng vế của 3 bđt cùngc hiều ta có \(A+\frac{a+b+c+3}{4}>=\frac{3}{4}\left(a+b+c\right)\)

=> \(A>=\frac{a+b+c}{2}-\frac{3}{4}\)

Áp dụng bđts cô si ta có a+b+c>=\(3\sqrt[3]{abc}=3\)

=> A>=\(\frac{3}{4}\)

mình làm hơi tắt cậu chịu khó đọc nhé

4 tháng 9 2017

bài này Áp dụng bất đẳng thức cô si nhé

đặt \(A=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)

ta có Áp dựng bất đẳng thức cô si ta có \(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}>=3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)

tương tự ta có \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}>=\frac{3b}{4}\)

                       \(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1_{1+a}}{8}+\frac{1+b}{8}>=\frac{3c}{4}\)

cộng từng vế của 3 bđt cùng chiều ta có \(A>=\frac{3\left(a+b+c\right)}{4}\)

mà 

28 tháng 3 2020

Ta có:

\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{a\left(a+1\right)}{8}+\frac{a\left(b+1\right)}{8}\ge3\sqrt[3]{\frac{a^3\left(a+1\right)\left(b+1\right)}{64\left(a+1\right)\left(b+1\right)}}=\frac{3a}{4}\)

\(\Rightarrow LHS+\frac{a^2+b^2+c^2+ab+bc+ca+2\left(a+b+c\right)}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow LHS\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{a^2+b^2+c^2+ab+bc+ca}{8}\)

\(\ge\frac{a+b+c}{2}-\frac{a^2+b^2+c^2}{4}\)

Có ý tưởng đến đây thôi nhưng lại bị ngược dấu rồi :(

29 tháng 3 2020

BĐT <=> \(\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

<=> \(\frac{ab+bc+ac+a+b+c}{abc+1+ab+bc+ac+a+c+b}\ge\frac{3}{4}\)

<=> \(4\left(ab+bc+ac+a+b+c\right)\ge3\left(ab+bc+ac+a+b+c+2\right)\)

<=> \(ab+bc+ac+a+b+c\ge6\)(1)

(1) luôn đúng do \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}=3;a+b+c\ge3\sqrt[3]{abc}=3\)

=> BĐT được CM

Dấu bằng xảy ra khi \(a=b=c=1\)