\(a+b+c\ge ab+bc+ca\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

Bạn post nhiều bài BĐT hay thật

Đặt \(\left(a;b;c\right)=\left(\dfrac{2x}{y+z};\dfrac{2y}{z+x};\dfrac{2z}{x+y}\right)\)

BĐT trở thành:

\(\sum_{cyc}\dfrac{x}{y+z}\ge\sum_{cyc}\dfrac{2xy}{\left(x+y\right)\left(x+z\right)}\)

Sử dụng AM-GM, ta có:

\(VP\le\sum_{cyc}xy\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(x+z\right)^2}\right]=\sum_{cyc}\dfrac{xy}{\left(z+x\right)^2}+\sum_{cyc}\dfrac{xy}{\left(y+z\right)^2}=\sum_{cyc}\dfrac{xy}{\left(y+z\right)^2}+\sum\dfrac{zx}{\left(y+z\right)^2}=\sum_{cyc}\dfrac{x}{y+z}=VT\)

26 tháng 2 2018

Bài này trông có vẻ nhiều lời giải nhưng thôi, làm biếng post

8 tháng 1 2020

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

4 tháng 7 2020

\(\frac{a^3}{b^2+3}=\frac{a^3}{b^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Tương tự

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{b^2+3}=\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\)

Theo Cô-si:\(\frac{a^3}{\left(a+b\right)\left(b+c\right)}+\frac{a+b}{8}+\frac{b+c}{8}\ge\frac{3}{4}a\)

\(\Rightarrow\Sigma_{cyc}\frac{a^3}{\left(a+b\right)\left(b+c\right)}\ge\frac{1}{4}\left(a+b+c\right)\ge\frac{1}{4}\sqrt{3\left(ab+bc+ca\right)}=\frac{3}{4}\)

21 tháng 4 2020

Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)

\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)

Đến đây t cần chứng minh:

 \(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)

Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)

\(\Rightarrow x+y+z=1\)

(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)

Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)

Nhứng phần kia tương tự

\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)

Lần trước làm không đúng hy vọng bây giờ gỡ lại được

21 tháng 4 2020

nub

Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko

16 tháng 5 2017

Ta có 

\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

Tương tự, ta có

\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)

Cộng vế theo vế của 3 bđt ta được đpcm

7 tháng 7 2018

Từ giả thiết:\(ab+bc+ca=3\Rightarrow\left(ab+bc+ca\right)^2=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=9\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=9-2abc\left(a+b+c\right)\)

Ta có:\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ca}+\frac{c}{2c^2+ab}\)\(=\frac{1}{\frac{2a^2+bc}{a}}+\frac{1}{\frac{2b^2+ca}{b}}+\frac{1}{\frac{2c^2+ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2a+\frac{bc}{a}+2b+\frac{ca}{b}+2c+\frac{ab}{c}}=\frac{9}{2a+2b+2c+\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}}\)

\(=\frac{9}{2a+2b+2c+\frac{b^2c^2+c^2a^2+a^2b^2}{abc}}=\frac{9}{2a+2b+2c+\frac{9-2abc\left(a+b+c\right)}{abc}}\)

\(=\frac{9}{2a+2b+2c+\frac{9}{abc}-2\left(a+b+c\right)}=\frac{9}{\frac{9}{abc}}=abc\)

Dấu "=" xảy ra khi 

\(\frac{2a^2+bc}{a}=\frac{2b^2+ca}{b}=\frac{2c^2+ab}{c}=\frac{2a^2+bc-2b^2-ca}{a-b}=\frac{2\left(a-b\right)\left(a+b\right)-c\left(a-b\right)}{a-b}\)

\(=2\left(a+b\right)-c\).Tương tự ta có:\(2\left(a+b\right)-c=2\left(b+c\right)-a=2\left(c+a\right)-b\)

\(\Leftrightarrow a+b=b+c=c+a\)

\(\Leftrightarrow a=b=c\)

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)