Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(1\geq a+b\geq 2\sqrt{ab}\Rightarrow ab\leq \frac{1}{4}\)
\(\frac{a}{2}+\frac{a}{2}+\frac{1}{16a^2}\geq 3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{1}{16a^2}}=\frac{3}{4}(1)\)
\(\frac{b}{2}+\frac{b}{2}+\frac{1}{16b^2}\geq 3\sqrt[3]{\frac{b}{2}.\frac{b}{2}.\frac{1}{16b^2}}=\frac{3}{4}(2)\)
\(\frac{15}{16}\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\geq \frac{15}{16}.2\sqrt{\frac{1}{a^2}.\frac{1}{b^2}}=\frac{15}{8ab}\geq \frac{15}{8.\frac{1}{4}}=\frac{15}{2}(3)\)
Lấy \((1)+(2)+(3)\Rightarrow a+b+\frac{1}{a^2}+\frac{1}{b^2}\geq \frac{3}{4}+\frac{3}{4}+\frac{15}{2}=9\) (đpcm)
Dấu "=" xảy ra khi $a=b=\frac{1}{2}$
Áp dụng bất đẳng thức AM-GM cho 2 số dương ta có:\(\dfrac{a^3}{a^2+b^2}=\dfrac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}\)(1)
\(\dfrac{b^3}{b^2+1}=\dfrac{b\left(b^2+1\right)-b}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}\)(2)
\(\dfrac{1}{a^2+1}=\dfrac{a^2+1-a^2}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)(3)
Cộng theo vế:
\(A\ge a+b+1-\dfrac{b}{2}-\dfrac{1}{2}-\dfrac{a}{2}=\dfrac{a+b+1}{2}\left(đpcm\right)\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Áp dụng BĐT Bunhiacopxki:
\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(1.a+4.\frac{1}{b}\right)^2\)\(\Rightarrow a^2+\frac{1}{b^2}\ge\frac{1}{17}\left(a+\frac{4}{b}\right)^2\)
\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{1}{\sqrt{17}}\left(a+\frac{4}{b}\right)\)
Tương tự, ta có: \(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{1}{\sqrt{17}}\left(b+\frac{4}{c}\right)\)
và \(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{1}{\sqrt{17}}\left(c+\frac{4}{a}\right)\)
Cộng từng vế của các BĐT trên, ta được:
\(P\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)\(\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)(svac - xơ)
\(=\frac{1}{\sqrt{17}}\left[\left(a+b+c\right)+\frac{9}{4\left(a+b+c\right)}+\frac{135}{4\left(a+b+c\right)}\right]\ge\frac{3\sqrt{17}}{2}\)
Vậy \(P=\sqrt{a^2+\frac{1}{b^2}}\)\(+\sqrt{b^2+\frac{1}{c^2}}\)\(+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{3\sqrt{17}}{2}\)
(Dấu "="\(\Leftrightarrow a=b=c=2\))
Bài em làm ok rồi nhưng mà dấu bằng xảy ra bị sai. Em kiểm tra lại!๖²⁴ʱČøøℓ ɮøү 2к⁷༉
Bài 1. Mình nghĩ đề bài của bạn nhầm ở chỗ dấu "\(\ge\)" , bạn sửa lại thành "\(\le\)" nhé ^^
Áp dụng bất đẳng thức Bunhiacopxki : \(9=3\left(a+b+c\right)=\left(1^2+1^2+1^2\right)\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right]\ge\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\)
\(\Rightarrow\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le9\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le3\)
\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le a+b+c\) (vì a+b+c = 3)
Bài 2.
Để chứng minh bất đẳng thức trên ta biến đổi : \(a+b+c=1\Leftrightarrow a+1=\left(1-b\right)+\left(1-c\right)\)
Tương tự : \(b+1=\left(1-a\right)+\left(1-c\right)\) ; \(c+1=\left(1-a\right)+\left(1-b\right)\)
Áp dụng bất đẳng thức Cosi, ta có : \(a+1=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\left(1\right)\)
Tương tự : \(b+1\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\left(2\right)\) ; \(c+1\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\left(3\right)\)
Nhân (1), (2) , (3) theo vế : \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\) (đpcm)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)
b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{\left(1+1+1\right)^2}{2\left(a+b+c\right)}=\dfrac{9}{2}\)
Vậy \(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{9}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)
1.
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với \(\dfrac{2}{3}\), không mất tính tổng quát, giả sử đó là b và c
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\ge0\)
Mặt khác \(0\le a\le1\Rightarrow1-a\ge0\)
\(\Rightarrow\left(b-\dfrac{2}{3}\right)\left(c-\dfrac{2}{3}\right)\left(1-a\right)\ge0\)
\(\Leftrightarrow-abc\ge\dfrac{4a}{9}+\dfrac{2b}{3}+\dfrac{2c}{3}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}\)
\(\Leftrightarrow-abc\ge-\dfrac{2a}{9}+\dfrac{2}{3}\left(a+b+c\right)-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc-\dfrac{4}{9}=-\dfrac{2a}{9}-\dfrac{2ab}{3}-\dfrac{2ac}{3}-bc+\dfrac{8}{9}\)
\(\Leftrightarrow-2abc\ge-\dfrac{4a}{9}-\dfrac{4ab}{3}-\dfrac{4ac}{3}-2bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{ab}{3}-\dfrac{ac}{3}-bc+\dfrac{16}{9}\)
\(\Leftrightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(b+c\right)-bc+\dfrac{16}{9}\ge-\dfrac{4a}{9}-\dfrac{a}{3}\left(2-a\right)-\dfrac{\left(b+c\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge-\dfrac{4a}{9}+\dfrac{a^2}{3}-\dfrac{2a}{3}-\dfrac{\left(2-a\right)^2}{4}+\dfrac{16}{9}\)
\(\Rightarrow ab+bc+ca-2abc\ge\dfrac{a^2}{12}-\dfrac{a}{9}+\dfrac{7}{9}=\dfrac{1}{12}\left(a-\dfrac{2}{3}\right)^2+\dfrac{20}{27}\ge\dfrac{20}{27}\)
\(\Rightarrow ab+bc+ca\ge2abc+\dfrac{20}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{2}{3}\)
Do a , b ,c đối xứng , giả sử a \(\ge b\ge c\Rightarrow\left\{{}\begin{matrix}a^2\ge b^2\ge c^2\\\dfrac{a}{b+c}\ge\dfrac{b}{a+c}\ge\dfrac{c}{a+b}\end{matrix}\right.\)
Áp dụng BĐT Trê - bư -sép ta có :
\(a^2.\dfrac{a}{b+c}+b^2.\dfrac{b}{a+c}+c^2.\dfrac{c}{a+b}\ge\dfrac{a^2+b^2+c^2}{3}.\left(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\right)=\dfrac{1}{3}.\dfrac{3}{2}=\dfrac{1}{2}\)Vậy \(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\ge\dfrac{1}{2}\) Dấu bằng xảy ra khi a = b =c = \(\dfrac{1}{\sqrt{3}}\)
Áp dụng AM-GM:
\(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=\dfrac{3}{\sqrt[3]{\left(ab+bc\right)\left(bc+ac\right)\left(ac+ab\right)}}\ge\dfrac{3}{\dfrac{1}{3}.2\left(ab+bc+ca\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)