Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N 10 26
Xét tam giác BMN và tam giác BCA
\(\widehat{B}\) chung
\(\widehat{MNB}=\widehat{A}=90^0\)
\(\Rightarrow\)Tam giác BMN đồng dạng với tam giác BCA (g.g)
\(\Rightarrow\frac{BM}{BC}=\frac{BN}{BA}\Rightarrow\frac{BM}{36}=\frac{10}{BA}\Rightarrow BM.BA=360\left(1\right)\)
Vì M là trung điểm của BA. Nên \(BM=\frac{1}{2}BA\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{1}{2}BA.BA=360\)
\(\Leftrightarrow BA^2=720\)
\(\Leftrightarrow AB=\sqrt{720}=\sqrt{36.4.5}=12\sqrt{5}\)
Áp dụng định lý pi-ta-go vào tam giác vuông ABC ta được:
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=36^2-\left(12\sqrt{5}\right)^2\)
\(\Rightarrow AC^2=576\)
\(\Rightarrow AC=\sqrt{576}=24cm\)
Vậy AC dài 24 cm
O A B C D M E x y
CM: a) Ta có: OA + AB = OB (A nằm giữa O và B vì OA < OB)
OC + CD = OD (C \(\in\)OD)
mà OA = OC (gt); AB = CD (gt) => OB = OD
Xét t/giác OCB và t/giác OAD
có: OC = OA (gt)
\(\widehat{O}\) : chung
OB = OD (gt)
=> t/giác OCB = t/giác OAD (c.g.c)
=> BC = AD (2 cạnh t/ứng)
b) Ta có: \(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)
\(\widehat{OAD}+\widehat{DAB}=180^0\) (kề bù)
mà \(\widehat{OCB}=\widehat{OAD}\) (Vì t/giác OCB = t/giác OAD) => \(\widehat{BCD}=\widehat{DAB}\)
Xét t/giác AEB và t/giác CED
có: \(\widehat{EAB}=\widehat{ECD}\) (cmt)
AB = CD (gt)
\(\widehat{EBA}=\widehat{CDE}\) (vì t/giác OCB = t/giác OAD)
=> t/giác AEB = t/giác CED (g.c.g)
c) Xét t/giác OBE và t/giác ODE
có: OB = OE (Cm câu a)
EB = ED (vì t/giác AEB = t/giác CED)
OE : chung
=> t/giác OBE = t/giác ODE (c.c.c)
=> \(\widehat{BOE}=\widehat{DOE}\) (2 góc t/ứng)
=> OE là tia p/giác của góc xOy
d) Ta có: OA = OC (gt)
=> O \(\in\)đường trung trực của AC
Ta lại có: t/giác AEB = t/giác CED (cmt)
=> AE = CE (2 cạnh t/ứng)
=> E \(\in\)đường trung trực của AC
Mà O \(\ne\)E => OE là đường trung trực của AC
e) Ta có: OD = OB (cmt)
=> OM là đường trung trực của DB (1)
EB = ED (vì t/giác AEB = t/giác CED)
=> EM là đường trung trực của DB (2)
Từ (1) và (2) => OM \(\equiv\)EM
=> O, E, M thẳng hàng
f) Ta có: OA = OC (gt)
=> t/giác OAC cân tại O
=> \(\widehat{OAC}=\widehat{OCA}=\frac{180^0-\widehat{O}}{2}\) (1)
Ta lại có: OB = OD (cmt)
=> t/giác OBD cân tại O
=> \(\widehat{B}=\widehat{D}=\frac{180^0-\widehat{O}}{2}\) (2)
Từ (1) và (2) => \(\widehat{OAC}=\widehat{B}\)
mà 2 góc này ở vị trí đồng vị
=> AC // BD
Dễ mà bn
x^2+2x+1+1
=(x+1)^2+1=0
Nên (x+1)^2=-1
Điều này vô lí bởi (x+1)^2 luôn >=0(đpcm)
(Bạn tự vẽ hình nhé)
a/ \(\Delta AMK\)và \(\Delta BMC\)có: AM = BM (M là trung điểm của AB)
\(\widehat{AMK}=\widehat{BMC}\)(đối đỉnh)
MK = MC (gt)
=> \(\Delta AMK\)= \(\Delta BMC\)(c. g. c) (đpcm)
b/ Ta có: \(\Delta AMK\)= \(\Delta BMC\)(cm câu a)
=> \(\widehat{K}=\widehat{C}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => KA // BC (đpcm)
c/ Giả sử K, A, H không thẳng hàng (*)
\(\Delta ANH\)và \(\Delta CNB\)có:
AN = NC (N là trung điểm của AC)
\(\widehat{ANH}=\widehat{BNC}\)(đối đỉnh)
NH = NB (gt)
=> \(\Delta ANH\)= \(\Delta CNB\)(c. g. c)
=> \(\widehat{H}=\widehat{B}\)(hai cạnh tương ứng bằng nhau ở vị trí so le trong) => AH // BC (đpcm)
(*) => Có hai đường thẳng KA và AH cùng song song với BC (Vô lý! Trái với tiên đề Ơclit)
=> (*) sai
=> K, A, H thẳng hàng (đpcm)