Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F H
a/
Xét tf vuông ABD và tg vuông EBD có
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg ABD = tg EBD (Hai yg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AD=DE
b/
Gọi H là giao của BD và AE
Xét tg ABH và tg EBH có
tg ABD = tg EBD (cmt) => AB=EB
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BH chung
=> tg ABH = tg EBH (c.g.c) => HA=HE (1)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}\) mà \(\widehat{AHB}+\widehat{EHB}=\widehat{AHE}=180^o\)
\(\Rightarrow\widehat{AHB}=\widehat{EHB}=90^o\Rightarrow BD\perp AE\) (2)
Từ (1) và (2) => BD là đường trung trực của AE
c/
Gọi F' là giao của AB và DE
Xét tg vuông F'EB và tg vuông ABC có
\(\widehat{BF'E}=\widehat{BCA}\) (cùng phụ với \(\widehat{ABC}\) )
AB=EB (cmt)
=> tg F'EB = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> BF=BC
Xét tg F'BD và tg CBD có
BF'=BC
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD chung
=> tg F'BD = tg CBD (c.g.c) => DF' = DC
Mà DF = DC \(\Rightarrow F\equiv F'\) =>A, B, F thẳng hàng
d/
Xét tg BCF có
\(CA\perp BF;FE\perp BC\) => D là trực tâm của tg BCF
\(\Rightarrow BD\perp CF\) (trong tg 3 đường cao đồng quy)
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
a)Vì tam giác abc cân ở a =>góc abc=góc acb.mà góc acb =góc ecn (đối đỉnh) =>góc abc=góc ecn.
Xét tam giác bmd và tam giác cne có :bd=ce; góc abc=góc ecn =>tam giác bmd =tam giác ecn(cạnh góc vuông và góc nhọn kề)
=>md=ne.
b)Vì dm và en cung vuông góc với bc =>dm song song với en=>góc dmc=góc enc(so le trong)
xét tam giác dim và tam giác ein có :góc dmc =góc enc;góc mid=góc nie(đối đỉnh);góc mdi=góc nei=90 độ=>tam giác dim=tam giác ein(g.g.g.)
=>di=ie=>i là trung điểm de
c)gọi h là giao của ao với bc.
ta có:xét tam giác abo bằng tam giác aco=>bo=co=>o thuộc trung trực của bc .tương tự a thuộc trung trực của bc=>ao là trung trực bc
a/ Ta có \(\widehat{NCE}=\widehat{ACB}\) (góc đối đỉnh) mà \(\widehat{ACB}=\widehat{ABC}\) (do tg ABC cân tại A) \(\Rightarrow\widehat{ABC}=\widehat{NCE}\)
Xét tg vuông MBD và tg vuông NCE có
BD=CE (đề bài) và \(\widehat{ABC}=\widehat{NCE}\left(cmt\right)\) => tg MBD = tg NCE (hai tg vuông có cạnh góc vuông và 1 góc nhọn tương ứng = nhau thì bằng nhau) => MD=NE
b/ Xét tứ giác MEND có
\(MD\perp BC;NE\perp BC\) => MD//NE
MD=NE (cmt)
=> Tứ giác MEND là hình bình hành (Tứ giác có cặp cạnh đối song song và bằng nhau thì tứ giác đó là hbh)
MN và DE là 2 đường chéo của hbh MEND => I là trung điểm của DE (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
c/ ta có
\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{ABO}=\widehat{ABC}+\widehat{CBO}=90^o\)
\(\widehat{ACO}=\widehat{ACB}+\widehat{BCO}=90^o\)
\(\Rightarrow\widehat{CBO}=\widehat{BCO}\) => tam giác BOC cân tại O => BO=CO
Xét tg vuông ABO và tg vuông ACO có
AB=AC (Do tg ABC cân tại A)
BO=CO (cmt)
\(\widehat{ABO}=\widehat{ACO}=90^o\)
=> tg ABO = tg ACO (c.g.c) \(\Rightarrow\widehat{BAO}=\widehat{CAO}\) => AO là phân giác của \(\widehat{BAC}\)
=> BO là đường trung trực của BC (Trong tg cân đường phân giác của góc ở đỉnh đồng thời là đường cao, đường trung trực)
Bạn tự vẽ hình nha!!!
a.
Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
ABD = EBD (BD là tia phân giác của ABE)
=> Tam gác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
=> AB = EB (2 cạnh tương ứng) => B thuộc đường trung trực của AE
=> AD = ED (2 cạnh tương ứng) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE
b.
Xét tam giác ADF và tam giác EDC có:
DAF = DEC ( = 90 )
AD = ED (tam giác ABD = tam giác EBD)
ADF = EDC (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
=> DF = DC (2 cạnh tương ứng)
c.
Tam giác ADF vuông tại A có:
AD < DF (quan hệ giữa góc và cạnh đối diện trong tam giác vuông)
mà DF = DC (theo câu b)
=> AD < DC
d.
AB = EB (tam giác ABD = tam giác EBD)
=> Tam giác BAE cân tại B
=> \(BAE=\frac{180-ABC}{2}\)
BF = AB + AF
BC = EB + EC
mà AB = EB (tam giác ABD = tam giác EBD)
AF = EC (tam giác ADF = tam giác EDC)
=> BF = BC
=> Tam giác BFC cân tại B
=> \(BFC=\frac{180-FBC}{2}\)
mà \(BAE=\frac{180-ABC}{2}\) (chứng minh trên)
=> BFC = BAE
mà 2 góc này ở vị trí đồng vị
=> AE // CF