K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

B A C M D E 12cm 10cm

                                  Giải

Có AB = BC = 10cm => \(\Delta ABC\)cân tại B

a) Xét \(\Delta ABM\&\Delta CBM:\)

   \(\left(\Delta ABCcân\equiv B\right)\hept{\begin{cases}\widehat{ABM}=\widehat{CBM}\\\widehat{C}=\widehat{A}\end{cases}}\)

      \(BM:chung\)

\(\Rightarrow\Delta ABM=\Delta CBM\left(g.c.g\right)\)

\(\Rightarrow MA=MC\left(đpcm\right)\)

b) Từ cma) ta có: \(AC=MA+MB\)

                           \(AC=2MA\)

                            \(12=2MA\)

                            \(MA=6\left(cm\right)\)

Áp dụng định lý pi-ta-go vào tam giác vuông ABM ta có:

            \(AB^2=BM^2+MA^2\)

           \(BM^2=AB^2-MA^2\)

          \(BM^2=10^2-6^2\)

          \(BM^2=100-36\)

          \(BM^2=64\)

          \(BM=\sqrt{64}=8\left(BM>0\right)\)

11 tháng 5 2020

còn phần c) em bn tìm trên mạng nhé! lâu quá k học toán lớp 7 nên quên hết r =))

 #hoktot<3# 

10 tháng 5 2015

A B C H D E

a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...

Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC

=>HB=HC

b) Ta có HB+HC=BC

=>HB=HC=BC/2=8/2=4cm

Ap dụng định lí Py-ta-go vào tam giác BAH ta có

AH2+BH2=AB2

   AH2=AB2-BH2

  AH2= 52-42

AH2=25-16=9

=>AH=3

C)Xét tam giác vuông BDH và CEH ta có 

HB=HC(theo câu a)

Góc B=C(Vì tam giác ABC cân ở A)

=>tam giác BDH=CEH(ch-gn)

=>HD=HE(tương ứng)

Vậy tam giác HDE có HD=HE nên cân ở H

 

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
   AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
   AH mũ 2 + 4 mũ 2    = 5 mũ 2 
   AH mũ 2 + 16           = 25
   AH mũ 2                  = 25 - 16
   AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm
c) Mình bó tay :P

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=) HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=) HD<HC

11 tháng 2 2016

a) Vì tam giác ABC cân => góc B = góc C

Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt )
góc B = góc C ( cmt )
AH là cạnh chung
=> tam giác ABH = tam giác ACH ( c.g.c )
=> HB = HC ( hai cạnh tương ứng )
b) Vì HB = HC ( cmt )
Mà HB + HC = 8 cm => HB = HC = 8/2 = 4 cm
Xét tam giác ABH vuông tại H có:
 AH mũ 2 + BH mũ 2 = AB mũ 2 ( pitago )
AH mũ 2 + 4 mũ 2    = 5 mũ 2 
AH mũ 2 + 16           = 25
AH mũ 2                  = 25 - 16
AH mũ 2                  = 9

=> AH = căn bậc 2 của 9 = 3 cm

d. Có tam giác DHB = tam giác EHC ( cạnh huyền-góc nhọn) 

=> HD = HE (tương ứng)

Mà trong tam giác vuông HEC, HC lớn nhất và (cạnh huyền)> HE (cạnh góc vuông)

=> HD<HC

a: Xét ΔAHB vuông tại H và ΔAHK vuông tại H có 

AH chung

HB=HK

Do đó: ΔAHB=ΔAHK

6 tháng 12 2016

Ta có hình vẽ:

A B C M E F N x y

Câu d mình quên kí hiệu vuông góc rồi, bạn tự bổ sung nhé

a/ Xét tam giác AMB và tam giác AMC có:

AB = AC (GT)

BM = MC (GT)

AM : cạnh chung

=> tam giác AMB = tam giác AMC (c.c.c)

b/ Xét tam giác AEM và tam giác AFM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

AM : cạnh chung

\(\widehat{EAM}\)=\(\widehat{FAM}\) ( vì tam giác AMB = tam giác AMC)

Vậy tam giác AEM = tam giác AFM (g.c.g)

=> AE = AF (2 cạnh tương ứng)

c/ Xét tam giác EBM và tam giác FCM có:

\(\widehat{E}\)=\(\widehat{F}\)=900

BM = MC (GT)

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác EBM = tam giác FCM

(theo trường hợp cạnh huyền góc nhọn)

=> BE = FM (2 cạnh tương ứng) (1)

Ta có: EM: cạnh chung (2)

Ta có: 2 tam giác AEM và tam giác AFM đối xứng qua cạnh chung AM và có: \(\widehat{E}\)=\(\widehat{F}\)=900

=> \(\widehat{EMF}\) = 900 = \(\widehat{BEM}\) (3)

Từ (1),(2),(3) => tam giác BEM = tam giác EFM

=> \(\widehat{FEM}\)=\(\widehat{EMB}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> EF // BC

d/ Xét tam giác ABN và tam giác ACN có:

AB = AC (GT)

\(\widehat{BAN}\)=\(\widehat{CAN}\) (vì tam giác AMB = tam giác AMC)

AN: chung

=> tam giác ABN = tam giác ACN (c.g.c)

BN = CN ( 2 cạnh tương ứng)

Xét tam giác BMN và tam giác CMN có:

MN: chung

BM = MC (GT)

BN = CN (đã chứng minh)

=> tam giác BMN = tam giác CMN (c.c.c)

-Ta có: tam giác ABM = tam giác ACM (câu a)

=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)

=> góc AMB = góc AMC = 900

-Ta có: tam giác BMN = tam giác CMN (đã chứng minh)

=> \(\widehat{BMN}\)=\(\widehat{CMN}\) (2 góc tương ứng)

\(\widehat{BMN}\)+\(\widehat{CMN}\)=1800 (kề bù)

=> góc BMN = góc CMN = 900

Ta có: \(\widehat{AMB}\)+\(\widehat{BMN}\)=900+900 = 1800

hay \(\widehat{AMC}\)+\(\widehat{CMN}\)=900+900 = 1800

hay A,M,N thẳng hàng

7 tháng 12 2016

cảm ơn bạn nhiều

 

a, xét tam giác HAB và tam giác HAC ta có

  AB=AC(gt)

 góc BAH= góc AHC ( 2 góc tương ứng )

AH ( chung)

=>tam giác AHD = Tam giác AHC ( c. g.c)

=> HB=HC ( hai cạnh tương ứng )

=>góc AHC=góc AHD ( hai góc tương ứng)

b,xét tam giác ADH và tam giác AEH ta có 

 AH ( chung )

góc ADH = góc AEH ( ..)

c. Tam giac ABC vuông tại C

           2       2       2

=> BC   =AB  +AC

       2       2        2

=>10 =  9    + AC

        2

=>AC = 100-81 =19

=>AC = 4.35

1 tháng 3 2021

khocroixl nhung ma sai roibucminh