Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Ta có: abc⋮37
⇒100a+10b+c⋮37
⇒1000a+100b+10c⋮37
⇒1000a-999a+100b+10c⋮37(vì 999a⋮37)
⇒100b+10c+a⋮37
hay bca⋮37
Ta có: bca⋮37
⇒100b+10c+a⋮37
⇒1000b+100c+10a⋮37
⇒1000b-999b+100c+10a⋮37(vì 999b⋮37)
⇒100c+10a+b⋮37
hay cab⋮37(đpcm)
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
a)Ta có: abc\(⋮\)37 => 100.abc \(⋮\)37 => abc00 \(⋮\)37
=> (ab.1000 + c00) \(⋮\)37
=>[ab.999 + ( c00 + ab) ] \(⋮\)37
=>( ab . 99 + cab) \(⋮\)37
mà ab.999 = ab .27 .37 \(⋮\)37
=> cab \(⋮\)37
Vậy nếu abc \(⋮\)37 thì cab \(⋮\)37
b)1+3+5+7+9+...+(2x-1)=225
Với mọi x \(\in\)N, ta có 2x - 1 là số lẻ
Ta đặt A = 1 + 3 + 5 + 7 + 9+...+ (2x-1)=225
=> A là tổng của các số lẻ liên tiếp từ 1 đến (2x -1)
Số số hạng của A là:
[(2x - 1 - 1) : 2 + 1 = x (số hạng)
=> A= [(2x - 1) + 1] . x : 2 = x2
Mà A= 225 => x 2 = 225 = 152
\(\Rightarrow x=15\)
abc + bca + cab = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b = (100+10+1)a + (100+10+1)b + (100+10+1)c = 111a + 111b + 111c = 111(a+b+c) = 37 x 3 x (a + b + c)
Vậy abc + bca + cab chia hết cho 37
mk chỉ làm dc câu b thui nha bạn
ta có ví dụ: 504 chia hết cho 9; 450 chia hết cho 9
từ ví dụ trên ta đưa ra kết luận : Số abc nào chia hết cho 1 số thì khi đảo ngược số abc đó dưới dạng cab ta cx chia hết cho số đó. vậy chứng tỏ: abc chia hết cho 37 thì cab chí hết cho 37
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
B1 a
gọi 4 số TN liên tiếp là :
a ; a+1 ;a+2 ;a+3
lấy a+3-a=3 chia hết cho 3
Bài 2
có 4n+3 chia hết cho 2n+1 (1)
lại có 2n+1 chia hết cho 2n+1
=>4n+2 chia hết cho 2n+1 (2)
Lấy (1)-(2)
=>1chia hết cho 2n+1
=>2n+1=1 hoăc -1
tự giải tiếp