Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(AH\perp BC\) \(\Rightarrow AH< AB;AH< AC\)
\(\Rightarrow2.AH< AB+AC\Leftrightarrow AH< \dfrac{AB+AC}{2}\)
b) Theo câu a ta có: \(AH< \dfrac{AB+AC}{2}\) \(\left(1\right)\)
Tương tự ta có: \(BK< \dfrac{AB+BC}{2}\) \(\left(2\right)\)
\(CI< \dfrac{CA+CB}{2}\) \(\left(3\right)\)
Từ \(\left(1\right)\),\(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow AH+BK+CI< AB+AC+BC\)
Vì \(\Delta ACB\)cân tại A (gt)
=>AB=AC
Vì E và D lần lượt là trung điểm của AB và AC
=>AE=EB
AD=DC
Mà AB=AC
=>AE=AD
=>\(\Delta AED\)cân ở A
e, Trên tia đối của tia DH lấy điểm F sao cho DF = DH = 1/2 FH
Xét tam giác ADF và BDH có :
AD = BD ( cmt )
ADF = BDH ( 2 góc đối đỉnh )
DF = DH ( cách vẽ )
=> Tam giác ADF = tam giác BDH ( c.g.c )
=> FH = AB ( 2 cạnh tương ứng )
Mà DF = DH = 1/2 FH ( cách vẽ )
=> HD = 1/2 AB ( đpcm )
a, Xét tam giác ABH và tam giác ACH có:
góc ABH = góc ACH ( tam giác ABC cân tại A)
AH chung
góc BAH = góc CAH ( đường phân giác AH)
=> tam giác ABH = tam giác ACH(g.c.g)
b,Xét tam giác AKH và tam giác AIH có:
góc KAH = góc IAH (đường phân giác AH)
AH chung
góc HKA = góc HIA = 90 độ
=> tam giác AKH = tam giác AIH(g.c.g)
=> HK = HI ( 2 cạnh tương ứng )
Vì AH là đường phân giác trong tam giác ABC cân tại A
=> AH là đường cao của tam giác ABC => AH vuông với BC
=> AH là đường trung tuyến của tam giác ABC=>BH=CH
Xét tam giác BHK và tam giác CHI có:
góc HBK = góc HCI ( tam giác ABC cân tại A)
KH = IH( chứng minh trên )
góc BKH = góc CIH = 90 độ
=>tam giác BHK = tam giác CHI(g.c.g)
=>BK=CI(2 cạnh tương ứng)
c,chứng minh j kia bạn
a: Xét ΔABC có
AM,BK là đường cao
AM cắt BK tại I
=>I là trực tâm
=>CI vuông góc AB tại N
b:
Xet ΔAKB vuông tại K và ΔANC vuông tại N có
AB=AC
góc KAB chung
=>ΔAKB=ΔANC
=>BK=CN
DP//NC
=>DP/NC=BD/BC
=>DP/BK=BD/BC
DQ//BK
=>DQ/BK=CD/CB
=>DQ+DP=BK(BD/BC+CD/CB)=BK
Xét 2 tam giác vuông ΔBKC và ΔCIB ta có:
Cạnh huyền BC chung
\(\widehat{ABC}=\widehat{ACB}\) (ΔABC cân tại A)
=> ΔBKC = ΔCIB (c.h - g.n)
=> BK = CI (2 cạnh tương ứng)
cảm ơn