Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!111
a, xét tam giác tam giác ADB và am giác ADC:
Ab=ac (gt)
ad chung
góc adc = góc adb=90 độ (gt)
A B C D H K 1 2
a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :
AD ( cạnh chung )
\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )
AB = AC ( gt )
suy ra \(\Delta ADB\)= \(\Delta ADC\)( c.g.c )
b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng ) ( theo câu a )
Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)
\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AD\perp BC\)
c) vì \(\Delta ADB\)= \(\Delta ADC\)( theo câu a )
\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )
\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )
Mà \(\widehat{ABD}+\widehat{BDH}=90^o\); \(\widehat{ACD}+\widehat{CDK}=90^o\)
\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)
Xét \(\Delta HBD\)và \(\Delta KCD\)có :
\(\widehat{BDH}=\widehat{CDK}\)( cmt )
BD = CD ( cmt )
\(\widehat{ABD}=\widehat{ACD}\)( cmt )
suy ra \(\Delta HBD\)= \(\Delta KCD\)( g.c.g )
\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )
Bài 1:
a) Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+BH^2=AB^2\) (định lí Py - ta - go).
=> \(12^2+BH^2=15^2\)
=> \(BH^2=15^2-12^2\)
=> \(BH^2=225-144\)
=> \(BH^2=81\)
=> \(BH=9\left(cm\right)\) (vì \(BH>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+HC^2=AC^2\) (định lí Py - ta - go).
=> \(12^2+HC^2=20^2\)
=> \(HC^2=20^2-12^2\)
=> \(HC^2=400-144\)
=> \(HC^2=256\)
=> \(HC=16\left(cm\right)\) (vì \(HC>0\)).
b) Ta có: \(BC=BH+HC.\)
=> \(BC=9+16\)
=> \(BC=25\left(cm\right).\)
+ Xét \(\Delta ABC\) có:
\(AB^2+AC^2=15^2+20^2\)
=> \(AB^2+AC^2=225+400\)
=> \(AB^2+AC^2=625\) (1).
\(BC^2=25^2\)
=> \(BC^2=625\) (2).
Từ (1) và (2) => \(AB^2+AC^2=BC^2\left(=625\right).\)
=> \(\Delta ABC\) vuông tại \(A\) (định lí Py - ta - go đảo) (đpcm).
Chúc bạn học tốt!
Mình làm câu A thôi nha:
Xét tam giác ADB và tam giác ADC
Ta có:AB=AC (gt)
góc A1=A2 (gt)
AD là cạnh chung
=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)
Xét AHD và AKD lần lượt vuông tại H,K có:
AD: cạnh chung
HAD = KAD ( vì AD là tia phân giác góc A)
Suy ra AHD=AKD(ch-gn)
Do đó AH=AK ( 2 cạnh tương ứng)
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
a, Xét tam giác ADB và tam giác ADC có
AD _ chung ; AB = AC
Vậy tam giác ADB = tam giác ADC ( ch-cgv )
b, ^DAB = ^DAC ( 2 góc tương ứng )
Xét tam giác AHD và tam giác AKD có
^HAD = ^KAD ; AD _ chung
Vậy tam giác AHD = tam giác AKD (ch-gn)
=> AH = AK ( 2 cạnh tương ứng )
Ta có AH/AB = AK/AC => HK // BC ( Ta lét đảo )