K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2021

a) Xét tam giác ADB và tam giác AEC:

^ADB = ^AEC (=90o)

AB = AC (∆ABC cân tại A)

^A chung

=> Tam giác ADB = Tam giác AEC (ch - gn)

=> AD = AE (2 cạnh tương ứng)

=> Δ ADE cân tại A

b)  Xét tam giác AED: ^A + ^AED + ^ADE = 180o (tổng 3 góc trong tam giác)

Mà ^AED = ^ADE (Δ ADE cân tại A) 

=>  ^A = 2 ^AED (1)

Xét tam giác ABC: ^A + ^B + ^C = 180o (tổng 3 góc trong tam giác)

Mà ^B = ^C (Δ ABC cân tại A) 

=>  ^A = 2 ^B (2)

Từ (1) và (2) => ^B = ^AED

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (dhnb)

c) Xét tam giác BEC và tam giác CDB:

^BEC = ^CDB (= 90o)

BC chung

^B = ^C (∆ABC cân tại A)

=> Tam giác CBE = Tam giác CDB (ch - gn)

=> IB = IC (2 cạnh tương ứng)

d) Xét tam giác ABI và tam giác ACI:

AB = AC (∆ABC cân tại A)

AI chung

IB = IC (cmt)

=> Tam giác ABI = Tam giác ACI (c - c - c)

=> ^BAI = ^CAI (2 góc tương ứng)

=> AI là phân giác ^A hay AM là phân giác ^A (M\(\in AI\))

Xét ∆ABC cân tại A có:  AM là phân giác ^A (cmt)

=> AM là đường cao (TC các đường trong tam giác)

=> AM \(\perp\) BC