Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}\left(a+b\right)^2}=\frac{\sqrt{5}\left(a+b\right)}{2}\)
Tương tự:\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}\left(b+c\right)}{2}\);\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}\left(c+a\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:\(VT\ge\frac{\sqrt{5}\left(2a+2b+2c\right)}{2}=\sqrt{5}\left(a+b+c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Lời giải:
Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:
\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)
\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)
Hoàn toàn tương tự:
\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)
Cộng theo vế:
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Cân bằng hệ số:
Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)
\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)
\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)
Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)
Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:
\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)
Dấu "=" xảy ra khi a = b =c = 1
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\)
Vì a,b,c là các số dương \(\Rightarrow\frac{3}{4}\left(a-b\right)^2\ge0\)
\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\sqrt{\frac{5}{4}}.\left(a+b\right)\)
Tương tự và cộng lại, ta có:
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2a^2}+\sqrt{2c^2+ca+2a^2}\)\(\ge\sqrt{\frac{5}{4}}.\left(a+b+c\right)\) \(=3\sqrt{5}\)
\(''=''\Leftrightarrow a=b=c=1\)
Sử dụng AM-GM:
\(\Sigma\frac{\sqrt{ab}}{a+b+2c}=\Sigma\frac{\sqrt{ab}}{a+c+b+c}\le\frac{1}{2}\Sigma\frac{\sqrt{ab}}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{4}\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)=\frac{3}{4}\)
Đẳng thức xảy ra tại a=b=c
a/ \(\sqrt[5]{2a+b}+\sqrt[5]{2b+c}+\sqrt[5]{2c+a}\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\sqrt[5]{3^4}.\sqrt[5]{2a+b}+\sqrt[5]{3^4}.\sqrt[5]{2b+c}+\sqrt[5]{3^4}.\sqrt[5]{2c+a}\right)\)
\(\le\frac{1}{\sqrt[5]{3^4}}\left(\frac{3+3+3+3+2a+b}{5}+\frac{3+3+3+3+2b+c}{5}+\frac{3+3+3+3+2c+a}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}\left(\frac{36}{5}+\frac{3\left(a+b+c\right)}{5}\right)\)
\(=\frac{1}{\sqrt[5]{3^4}}.9=3\sqrt[5]{3}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Đề thiếu nhé, a,b,c >0
Áp dụng BĐT Bunhiacopxki, ta có:
\(M^2=\left(\sqrt{2a+5\sqrt{ab}+2b}+\sqrt{2b+5\sqrt{bc}+2c}+\sqrt{2c+5\sqrt{ca}+2a}\right)^2\)
\(\le3\left[4\left(a+b+c\right)+5\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\right]\)
\(\le3\left[4\left(a+b+c\right)+5\left(a+b+c\right)\right]=81\)
\(\Rightarrow M\le9\)
\(MaxM=9\Leftrightarrow a=b=c=1\)
(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\sqrt{\left(a+b+c\right)\left(a+b+c\right)}=a+b+c\left(Bunhiacopxki\right)\))