![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
nhận thấy nếu áp dụng bất đẳng thức như bình thường thì ta sẽ bị ngược dấu, do đó ta dùng kỹ thuật cauchy ngược dấu
ta có:
\(\dfrac{a^3}{a^2+b^2}\)=a-\(\dfrac{a.b^2}{a^2+b^2}\)\(\ge\)a-\(\dfrac{a.b^2}{2ab}\)=a-\(\dfrac{b}{2}\)
\(\dfrac{b^3}{b^2+1}\)=b-\(\dfrac{b}{b^2+1}\)\(\ge\)b-\(\dfrac{b}{2b}\)=b-\(\dfrac{1}{2}\)
\(\dfrac{1}{a^2+1}\)=1-\(\dfrac{a^2}{a^2 +1}\)\(\ge\)1-\(\dfrac{a^2}{2a}\)=1-\(\dfrac{a}{2}\)
cộng từng vế của bất đẳng thức lại với nhau ta được:
\(\dfrac{a^3}{a^2+b^2}\)+\(\dfrac{b^3}{b^2+1}\)+\(\dfrac{1}{a^2+1}\)\(\ge\)a-\(\dfrac{b}{2}\)+b-\(\dfrac{1}{2}\)+1-\(\dfrac{a}{2}\)=\(\dfrac{a+b+1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo bất đẳng thức tam giác
\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)
Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)
\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)
Cộng theo từng vế
\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
cau 2
a^2 +b^2+c^2 +3>=2(a+b+c)
<=> a^2+b^2 +c^2 +3 -2a -2b -2c >=0
<=>(a-1)^2+(b-1)^2+(c-1)^2>=0 (luon đúng)
vậy a^2 +b^2 +c^2 +3 >=2(a+b+c)
cau 1
a^2 +b^2 +1>= ab +a +b (H)
<=> 2a^2 +2b^2 -2a -2b -2ab +2>=0 (nhân cả 2 vế với 2 đồng thời chuyển vế)
<=> (a^2 -2a +1) +(b^2-2b+1 )+(a^2 -2ab+b^2)>=0
<=> (a-1)^2+(b-1)^2 +(a-b)^2>=0 (luon dung)
=>H luôn đung
a2 + b2 + c2 \(\ge\frac{1}{3}\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge1\)\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow3.\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow3.a^2+3.b^2+3.c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Rightarrow2.a^2+2.b^2+2.c^2\ge2ab+2bc+2ac\)
\(\Rightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
luôn đúng
=> đẳng thức đầu đúng => đpcm