\(\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2020

\(P=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\Rightarrow2P=\frac{2}{2+a}+\frac{2}{2+b}+\frac{2}{2+c}\)

\(\Rightarrow3-2P=\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{a+b+c+6}\)

\(3-2P\ge\frac{a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{a+b+c+6}\ge\frac{a+b+c+6\sqrt[6]{a^2b^2c^2}}{a+b+c+6}=\frac{a+b+c+6}{a+b+c+6}=1\)

\(\Rightarrow2P\le2\Rightarrow P\le1\)

13 tháng 2 2020

Mấy cái dấu "=" anh tự xét.

Áp dụng BĐT AM-GM: \(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}\)

a) Áp dụng: \(VT\ge\frac{\left(a+b+c\right)^2}{3}.\frac{9}{2\left(a+b+c\right)}=\frac{3}{2}\left(a+b+c\right)\)

b) \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)

17 tháng 12 2016

1) ĐK: \(\frac{x+1}{x}>0\Leftrightarrow\left[\begin{array}{nghiempt}x>0\\x< -1\end{array}\right.\)

Đặt \(t=\sqrt{\frac{x+1}{x}}\left(t>0\right)\) , bất pt đã cho trở thành:

\(\frac{1}{t^2}-2t>3\Leftrightarrow\frac{1-2t^3-3t^2}{t^2}>0\Leftrightarrow1-2t^3-3t^2>0\)

\(\Leftrightarrow\left(t+1\right)^2\left(1-2t\right)>0\Leftrightarrow1-2t>0\Leftrightarrow t< \frac{1}{2}\)

\(t< \frac{1}{2}\Rightarrow\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow\frac{3x+4}{4x}< 0\)

Lập bảng xét dấu ta được \(-\frac{4}{3}< x< 0\)

Kết hợp điều kiện ta được: \(-\frac{4}{3}< x< -1\) là giá trị cần tìm

 

 

17 tháng 12 2016

3) Chứng minh BĐT phụ: \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\left(a,b>0\right)\)(1)

\(\left(1\right)\Leftrightarrow\frac{1}{a+b}\le\frac{a+b}{4ab}\Leftrightarrow4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)

Dấu '=' xảy ra ↔ a = b

Áp dụng BĐT trên, ta có:

\(\frac{x}{x+1}=\frac{x}{x+x+y+z}=\frac{x}{x+y+x+z}\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\)

Tương tự:

\(\frac{y}{y+1}\le\frac{1}{4}\left(\frac{y}{y+x}+\frac{y}{y+z}\right)\)

\(\frac{z}{z+1}\le\frac{1}{4}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)\)

Cộng vế theo vế ba BĐT trên ta được:

\(P\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{z+x}+\frac{z}{z+y}+\frac{y}{y+z}\right)\)

\(\Leftrightarrow P\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)

Dấu '=' xảy ra khi x = y = z = 1/3 (do x + y + z = 1)

Vậy GTLN của P là 3/4 khi x = y = z = 1/3

NV
15 tháng 2 2020

\(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=a+b+c+3\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(P=\sum\frac{x}{x^2+1}=\sum\frac{x}{\left(x+y\right)\left(x+z\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Mặt khác \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)=\frac{8}{9}\left(x+y+z\right)\)

\(\Rightarrow P\le\frac{9}{4\left(x+y+z\right)}\le\frac{9}{4\sqrt{3\left(xy+yz+zx\right)}}=\frac{3\sqrt{3}}{4}\)

NV
18 tháng 11 2019

\(VT=\frac{b^2c^2}{b+c}+\frac{a^2c^2}{a+c}+\frac{a^2b^2}{a+b}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
11 tháng 2 2020

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

a/ \(VT=\frac{1}{a+a+b+c}+\frac{1}{a+b+b+c}+\frac{1}{a+b+c+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\frac{3}{4}\)

b/ \(VT\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{bc}{4}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{ca}{4}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)