Cho a,b,c >0  thỏa mãn a+b+c = \(a^2+b^2+c^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Ta có:   

      (a2+b2+c2)-(a+b+c)=0

<=>a(a-1)+b(b-1)+c(c-1)=0 (1)

Lại có:

       (a3+b3+c3)-(a2+b2+c2)=0

<=>a2(a-1)+b2(b-1)+c2(c-1)=0 (2)

Lấy (2) - (1) ta có:

       [a2(a-1)+b2(b-1)+c2(c-1)]-[a(a-1)+b(b-1)+c(c-1)]=0

<=>a(a-1)2+b(b-1)2+c(c-1)2=0

Vì a>0 => a(a-1)2>0

    b>0 => b(b-1)2>0

    c>0 => c(c-1)2>0

=>a=b=c=1 (do a,b,c>0)

=> a5+b5+c5=3

3 tháng 6 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

Mà \(\left(a+b+c\right)\left(a^3+b^3+c^3\right)=\left(a^2+b^2+c^2\right)^2\)

Dấu "=" xảy ra \(< =>a=b=c\)

Suy ra \(\hept{\begin{cases}3a=3a^2\\3b=3b^2\\3c=3c^2\end{cases}}< = >a=b=c=1>0\)

Khi đó \(a^5+b^5+c^5=1^5+1^5+1^5=3\)

NM
2 tháng 6 2021

áp dụng bất đẳng thức bunhia ta có :

\(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

mà ta có dấu bằng xảy ra vậy ta có \(\frac{a^3}{a}=\frac{b^3}{b}=\frac{c^3}{c}\Leftrightarrow a=b=c\)

thay lại ta có \(a=b=c=1\Rightarrow a^5+b^5+c^5=3\)

10 tháng 2 2016

\(1.\)  Đang duyệt

\(2a.\)

Ta có: 

\(P-Q=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\frac{b^3}{a^2+ab+b^2}-\frac{c^3}{b^2+bc+c^2}-\frac{a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}+\frac{\left(b-c\right)\left(b^2+bc+c^2\right)}{b^2+bc+c^2}+\frac{\left(c-a\right)\left(c^2+ac+a^2\right)}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=a-b+b-c+c-a\)  (do  \(a,b,c\ne0\)  )

\(\Leftrightarrow\)  \(P-Q=0\)

Vậy,  \(P=Q\)  \(\left(đpcm\right)\)

10 tháng 2 2016

\(1.\)

Theo đề bài, ta có:        

\(a^3=b^2+b+\frac{1}{3}\)  \(\left(1\right)\)

\(b^3=c^3+c^2+\frac{1}{3}\)  \(\left(2\right)\)

\(c^3=a^3+a^2+\frac{1}{3}\)  \(\left(3\right)\)

Vì  \(b^2+b+\frac{1}{3}=\left(b+\frac{1}{2}\right)^2+\frac{1}{12}\ge\frac{1}{12}>0\) nên từ \(\left(1\right)\)  \(\Rightarrow\)  \(a^3>0\) , tức là  \(a>0\)

Tương tự,  \(b,c>0\)

Do vai trò hoán vị của các ẩn \(a,b,c\)  là như nhau nên có thể giả sử  \(a=max\left\{a,b,c\right\}\)  hay  \(a\ge b\)   \(;\)  \(a\ge c\)

Do đó,

\(\text{+) }\) Từ  \(\left(1\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(a^3=b^2+b+\frac{1}{3}\le a^2+a+\frac{1}{3}=c^3\)

Theo đó,  \(a^3\le c^3\)  hay \(a\le c\)  

Mà \(a\ge c\)  \(\left(cmt\right)\)

\(\Rightarrow\)  \(a=c\)   \(\left(\text{*}\right)\)

Lại có:

\(\text{+) }\) Từ \(\left(2\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(b^3=c^2+c+\frac{1}{3}=a^2+a+\frac{1}{3}=c^3\)  (do  \(a=c\)  )

nên  \(b^3=c^3\) , tức là  \(b=c\)  \(\left(\text{**}\right)\)

Vậy, từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\) , suy ra  \(a=b=c\)  

18 tháng 10 2015

bạn có:
1/a^3(b+c) + 1/b^3(a+c) + 1/c^3(a+b) = (b^2.c^2)/(a^3.b^2.c^2.(b+c)) + (a^2.c^2)/(a^2.b^3.c^2(a+c)) + a^2.b^2/(a^2.b^2.c^3.(a+b)) (nhân cả tử với mẫu cho a , b , c tương ứng)
vì abc = 1 nên bạn sẽ có:
(b^2.c^2)/(a(b+c)) + a^2.c^2/(b(a+c)) + a^2.b^2/(c(a+b))
áp dụng bất đẳng thức Cauchy-schwarz( bất đẳng thức này bạn dễ dàng chứng minh được dựa vào bunhiacopsky, bạn cũng có thể  lên mạng tìm hiểu :D)
(b^2.c^2)/(a(b+c)) + a^2.c^2/(b(a+c)) + a^2.b^2/(c(a+b)) >= (ac + ab + bc)^2/( a(b+c) + b(a+C) + c(a+b))
vế phải = (ac + ab + bc)^2/(2(ab + ac + bc) = (ac + ab + bc)/2 >= (3 căn bậc ba( a^2.b^2.c^2))/2 (bđt cauchy) >= 3.1/2 = 3/2 (vì abc = 1) => đpcm

 

27 tháng 2 2017

Cho 4 số dương a, b, c, d thỏa mãn điều kiện a+c=2b và c(b+d)=2bd. CM : 

6 tháng 9 2019

Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc

Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)

Ta có \(LHS=a^3.a+b^3.b+c^3.c\) 

\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)

\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)

\(=a^3+b^3+c^3=RHS\)

Đẳng thức xảy ra khi a = b = c = 1

6 tháng 9 2019

Bài 2:

\(BĐT\Leftrightarrow\frac{c^2}{a^2+b^2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}\)

Đến đây bớt 3/2 ở mỗi vế rồi dùng sos xem sao? Giờ phải ăn cơm đi học rồi, chiều về làm, ko được sẽ nghĩ cách khác.

8 tháng 6 2018

Đặt P=\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+5\left(a^2+b^2+c^2\right)\)

\(=\left(5a^2+\frac{4}{a}\right)+\left(5b^2+\frac{4}{b}\right)+\left(5c^2+\frac{4}{c}\right)\)

Lại có:\(a^3+b^3+c^3=3\)và \(a,b,c>0\)\(\Rightarrow0< a,b,c\le\sqrt[3]{3}\)

Ta chứng minh cho:

\(5x^2+\frac{4}{x}\ge2x^3+7\)với  \(0< x\le\sqrt[3]{3}\)

\(\Leftrightarrow5x^2+\frac{4}{x}-2x^3-7\ge0\)

\(\Leftrightarrow5x^3+4-2x^4-7x\ge0\)

\(\Leftrightarrow2x^4-5x^3+7x-4\le0\)

\(\Leftrightarrow\left(2x^2-x-4\right)\left(x-1\right)^2\le0\)

Nhận thấy \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\2x^2-x-4< 0\forall0< x\le\sqrt[3]{3}\end{cases}}\)\(\Rightarrow5x^2+\frac{4}{x}\ge2x^3+7\)\(\left(1\right)\)

Áp dụng (1).Ta có:

\(P\ge2a^3+7+2b^3+7+2c^3+7\) với \(0< a,b,c\le\sqrt[3]{3}\)

\(\Leftrightarrow P\ge2\left(a^2+b^2+c^2\right)+21\)

\(\Leftrightarrow P\ge27\) Do:\(a^3+b^3+c^3=3\)\(\left(đpcm\right)\)

Dấu = xảy ra khi:

\(a=b=c=1\)

9 tháng 2 2016

\(1.\)  \(\left(a+2\right)\left(a+3\right)\left(a^2+a+6\right)+4a^2=\left(a^2+5a+6\right)\left(a^2+a+6\right)+4a^2\)

Đặt  \(t=a^2+3a+6\)  , ta được:

\(\left(t+2a\right)\left(t-2a\right)+4a^2=t^2-4a^2+4a^2=t^2=\left(a^2+3a+6\right)^2\)

8 tháng 2 2016

bài 1:

(a^2+3a+6)^2

6 tháng 4 2017

1 bai thoi cung dc