Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0\Leftrightarrow ab+bc+ac=0\Leftrightarrow bc=-ab-ac\)
\(\dfrac{a^2}{a^2+2bc}=\dfrac{a^2}{a^2+bc-ac-ab}=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}\)
CMTT: \(\left\{{}\begin{matrix}\dfrac{b^2}{b^2+2ca}=\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}\\\dfrac{c^2}{c^2+2ab}=\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}=\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{a^2}{\left(a-c\right)\left(a-b\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(a-c\right)\left(b-c\right)}=\dfrac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\dfrac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Vì sao bước thứ 2 từ dưới lên lại có thể suy ra (a−b)(b−c)(a−c)/(a−b)(b−c)(a−c)=1?
Nếu đổi đề như đã nói phía dưới thì ta làm như sau:
Áp dụng BĐT Cauchy:
\(\sqrt{a-1}=\sqrt{1(a-1)}\leq \frac{1+(a-1)}{2}=\frac{a}{2}\)
\(\Rightarrow \frac{\sqrt{a-1}}{a}\leq \frac{a}{2a}=\frac{1}{2}\)
\(\sqrt{b-2}=\frac{\sqrt{2(b-2)}}{\sqrt{2}}\leq \frac{1}{\sqrt{2}}.\frac{2+(b-2)}{2}=\frac{b}{2\sqrt{2}}\)
\(\Rightarrow \frac{\sqrt{b-2}}{b}\leq \frac{b}{2\sqrt{2}b}=\frac{1}{2\sqrt{2}}\)
\(\sqrt{c-3}=\frac{\sqrt{3(c-3)}}{\sqrt{3}}\leq \frac{1}{\sqrt{3}}.\frac{3+(c-3)}{2}=\frac{c}{2\sqrt{3}}\)
\(\Rightarrow \frac{\sqrt{c-3}}{c}\leq \frac{c}{2\sqrt{3}c}=\frac{1}{2\sqrt{3}}\)
Cộng theo vế:
\(A\leq \frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}\). Đây chính là GTLN của biểu thức.
Dấu bằng xảy ra khi \(\left\{\begin{matrix} 1=a-1\\ 2=b-2\\ 3=c-3\end{matrix}\right.\Leftrightarrow a=2; b=4; c=6\)
Nếu bạn đổi \(\sqrt{1-a}\mapsto \sqrt{a-1}; \sqrt{2-b}\mapsto \sqrt{b-2}; \sqrt{3-c}\mapsto \sqrt{c-3}\) thì may ra sẽ có thể tìm max bằng Cauchy
Còn nếu đề bài giữ nguyên như trên, cứ cho \(a\) càng gần 0 thì tử càng to, mẫu càng nhỏ, khi đó giá trị \(\frac{\sqrt{1-a}}{a}\) càng lớn vô cùng. Tương tự với các phân thức còn lại. Khi đó biểu thức không tồn tại GTLN
Áp dụng bất đẳng thức AM-GM:
\(\dfrac{a}{b^2+c^2}+\left(b^2+c^2\right)\ge2\sqrt{a}\)
\(\dfrac{b}{c^2+a^2}+\left(c^2+a^2\right)\ge2\sqrt{b}\)
\(\dfrac{c}{a^2+b^2}+\left(a^2+b^2\right)\ge2\sqrt{c}\)
Cộng theo vế:
\(A+2\ge2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Mặt khác: \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\ge3\left(a+b+c\right)\)
\(\left(3a+3b+3c\right)^2\ge27\left(a^2+b^2+c^2\right)=27\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{27}\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt[4]{27}\)
\(A\ge\sqrt[4]{27}-2\)
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(1,Q=\dfrac{a^4-2a^2+a^3-2a+a^2-2}{a^4-2a^2+2a^3-4a+a^2-2}\\ Q=\dfrac{\left(a^2-2\right)\left(a^2+a+1\right)}{\left(a^2-2\right)\left(a^2+2a+1\right)}=\dfrac{a^2+a+1}{a^2+2a+1}\)
\(Q=\dfrac{x^2+x+1}{\left(x+1\right)^2}-\dfrac{3}{4}+\dfrac{3}{4}=\dfrac{x^2+x+1-\dfrac{3}{4}x^2-\dfrac{3}{2}x-\dfrac{3}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}\\ Q=\dfrac{\dfrac{1}{4}x^2-\dfrac{1}{2}x+\dfrac{1}{4}}{\left(x+1\right)^2}+\dfrac{3}{4}=\dfrac{\dfrac{1}{4}\left(x-1\right)^2}{\left(x+1\right)^2}+\dfrac{3}{4}\ge\dfrac{3}{4}\\ Q_{min}=\dfrac{3}{4}\Leftrightarrow x=1\)
\(2,\text{Từ GT }\Leftrightarrow\dfrac{ayz+bxz+czy}{xyz}=0\\ \Leftrightarrow ayz+bxz+czy=0\\ \text{Ta có }\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\\ \Leftrightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{yz}{bc}+\dfrac{zx}{ca}\right)=0\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{cxy+ayz+bzx}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\cdot\dfrac{0}{abc}=1\\ \Leftrightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\)