K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

- Tham khảo sai rồi bé à.

NV
13 tháng 5 2020

\(a+b+c+ab+bc+ca=6abc\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z+xy+yz+zx=6\)

Ta cần chứng minh: \(x^2+y^2+z^2\ge3\)

Thật vậy:

\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

Cộng vế với vế:

\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+zx\right)\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)+3\ge12\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;1\right)\) hay \(\left(a;b;c\right)=\left(1;1;1\right)\)

30 tháng 8 2020

Chia cả 2 vế của giả thiết cho a,b,c ta được : 

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :

\(xy+yz+zx+x+y+z=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Sử dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)

Tiếp tục sử dụng AM-GM ta có : 

\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : 

\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\) 

\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

NV
25 tháng 5 2019

a/ Biến đổi tương đương:

\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)

\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)

\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)

Vậy BĐT ban đầu đúng

Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)

Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương

Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:

\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)

\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

AH
Akai Haruma
Giáo viên
20 tháng 12 2017

Lời giải:

Ta có:

\(ab+bc+ac=abc\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Xét \(a^4+b^4-(ab^3+a^3b)=(a-b)(a^3-b^3)\)

\(=(a-b)^2(a^2+ab+b^2)\geq 0\forall a,b> 0\)

\(\Rightarrow a^4+b^4\geq ab^3+a^3b\)

\(\Rightarrow 2(a^4+b^4)\geq (a^3+b^3)(a+b)\)

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}\geq \frac{(a^3+b^3)(a+b)}{2ab(a^3+b^3)}=\frac{a+b}{2ab}=\frac{1}{2a}+\frac{1}{2b}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a^4+b^4}{ab(a^3+b^3)}+\frac{b^4+c^4}{bc(b^3+c^3)}+\frac{c^4+a^4}{ca(c^3+a^3)}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=3\)

7 tháng 1 2020

lol

10 tháng 1 2020

không hiểu kiểu gì

13 tháng 6 2018

Ta có: \(a^3+b^3+c^3\ge3abc\) ( BĐT Cauchy )

\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge\dfrac{abc}{b}+\dfrac{abc}{c}+\dfrac{abc}{a}\)

Hay \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ac+ab+bc\left(đpcm\right)\)

13 tháng 6 2018

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(\dfrac{a^3}{b}+ab\)\(2\sqrt{\dfrac{a^3}{b}.ab}=2\sqrt{a^4}=2a^2\left(1\right)\)

\(\dfrac{b^3}{c}+bc\)\(2\sqrt{\dfrac{b^3}{c}.bc}=2\sqrt{b^4}=2b^2\left(2\right)\)

\(\dfrac{c^3}{a}+ac\)\(2\sqrt{\dfrac{c^3}{a}.ac}=2\sqrt{c^4}=2c^2\left(3\right)\)

Cộng từng vế của ( 1 ; 2 ; 3) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(a^2+b^2+c^2\right)\) ( * )

Áp dụng BĐT Cauchy cho các số dương , ta có :

\(a^2+b^2\)\(2ab\left(4\right)\)

\(b^2+c^2\)\(2bc\left(5\right)\)

\(c^2+a^2\)\(2ac\left(6\right)\)

Cộng từng vế của ( 4 ; 5 ; 6) , ta có :

\(2\left(a^2+b^2+c^2\right)\)\(2\left(ab+bc+ac\right)\) ( ** )

Từ ( * ; ** ) , ta có :

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ac\)\(2\left(ab+bc+ac\right)\)

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\)\(ab+bc+ac\)

24 tháng 3 2016

Dễ dàng chứng minh được với  \(a,b>0:\)

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(\frac{a^3}{b}+b^2\ge a\left(a+b\right)\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị theo bđt trên, ta có:

\(\frac{b^3}{c}+c^2\ge b\left(b+c\right)\)  \(\left(2\right)\)  và  \(\frac{c^3}{a}+a^2\ge c\left(c+a\right)\)  \(\left(3\right)\)

Cộng  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  vế theo vế, ta được:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+\left(a^2+b^2+c^2\right)\ge a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)=ab+bc+ca+\left(a^2+b^2+c^2\right)\)

Vì  \(a,b,c>0\)  nên  \(a^2+b^2+c^2\ne0\)

Do đó, trừ cả hai vế của bđt trên cho  \(a^2+b^2+c^2\)  ta được bất đẳng thức cần phải chứng minh, tức là:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)  

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

31 tháng 3 2016

a3/b+b3/c+c3/a=a4/ab+b4/bc+c4/ca>=(a2+b2+c2)2/ab+bc+ac>=(ab+bc+ca)2/ab+bc+ca=ab+bc+ca

dấu đẳng thức xảy ra<=>x=y=z