Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BĐT : \(x^3+y^3\ge xy\left(x+y\right)\) ta có:
\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a\left(a+b\right)\) (vì b>0)
\(\Leftrightarrow\frac{a^3}{b}+b^2\ge a^2+ab\) (1)
c/m tương tự ta đc: \(\frac{b^3}{c}+c^2\ge b^2+bc\) (2)
\(\frac{c^3}{a}+a^2\ge c^2+ca\) (3)
Từ (1),(2),(3)=> \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\) =>đpcm
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT=\frac{\left(\sqrt{6}\right)^2}{2\left(ab+bc+ca\right)}+\frac{\left(\sqrt{2}\right)^2}{a^2+b^2+c^2}\)
\(VT\ge\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{8+4\sqrt{3}}{\left(a+b+c\right)^2}\)
\(=8+4\sqrt{3}=8+\sqrt{48}>8+\sqrt{36}=8+6=14\)
Ta có đpcm
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
no la bdt bunhia do ban . nhan a+b+c voi ca 2 ve . ap dung bunhia la ra
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
\(\frac{bc}{a}+\frac{ac}{b}=c\left(\frac{a}{b}+\frac{b}{c}\right)\ge2c\)
Tương tự ....