Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi: a,b,c > 0 thì làm sao mà có: ab + bc + ca = 0 được.
BT2: Nhân 2 lên, chuyển vế, biến đổi bla..... sẽ ra đpcm
\(P=\dfrac{bc}{a\left(b+c\right)}+\dfrac{ca}{b\left(c+a\right)}+\dfrac{ab}{c\left(a+b\right)}\)
\(=\dfrac{b^2c^2}{abc\left(b+c\right)}+\dfrac{c^2a^2}{abc\left(c+a\right)}+\dfrac{a^2b^2}{abc\left(a+b\right)}\)
\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\dfrac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\dfrac{3}{2}\)
Dấu = xảy ra khi \(a=b=c\)
Xét \(\sqrt{\dfrac{\left(a+bc\right)\left(b+ac\right)}{c+ab}}=\sqrt{\dfrac{\left(a\left(a+b+c\right)+bc\right)\left(b\left(a+b+c\right)+ac\right)}{c\left(a+b+c\right)+ab}}\)
\(=\sqrt{\dfrac{\left(a^2+ab+ac+bc\right)\left(ab+b^2+bc+ac\right)}{ac+bc+c^2+ab}}\)
\(=\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}}\)\(=\sqrt{\left(a+b\right)^2}=a+b\)
Tương tự cho 2 đẳng thức còn lại rồi cộng theo vế
\(P=a+b+b+c+c+a=2\left(a+b+c\right)=2\)
Tìm trước khi hỏi Câu hỏi của Phan Đình Trường - Toán lớp 8 | Học trực tuyến
Áp dụng BĐT Cauchy
\(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)\ge9abc\)
\(\Rightarrow\sqrt{\dfrac{\left(a+b+c\right)\left(ab+bc+ac\right)}{abc}}\ge3\)
\(\Rightarrow P\ge3+\dfrac{4bc}{\left(b+c\right)^2}\)
Ta cần tìm Min của \(3+\dfrac{4bc}{\left(b+c\right)^2}\)
Không mất tính tổng quát giả sử \(b\ge c\)
\(\Rightarrow b+c\le2b\)\(\Leftrightarrow\left(b+c\right)^2\le4b^2\Leftrightarrow\dfrac{4bc}{\left(b+c\right)^2}\ge\dfrac{c}{b}\)
\(b\ge c\Rightarrow\dfrac{c}{b}\ge1\)
Vậy \(3+\dfrac{4bc}{\left(b+c\right)^2}\ge4\)
Dấu đẳng thức xảy ra khi a = b = c
Áp dụng BĐT bunyakovsky và AM -GM ta có:
\(\sqrt{\dfrac{\left[a+\left(b+c\right)\right]\left[bc+a\left(b+c\right)\right]}{abc}}\ge\sqrt{\dfrac{a\left(\sqrt{bc}+b+c\right)^2}{abc}}=\dfrac{\sqrt{bc}+b+c}{\sqrt{bc}}=1+\dfrac{b+c}{\sqrt{bc}}\)
\(LHS\ge1+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{b+c}{2\sqrt{bc}}+\dfrac{4bc}{\left(b+c\right)^2}\ge1+3\sqrt[3]{\dfrac{4bc\left(b+c\right)^2}{4bc\left(b+c\right)^2}}=4\)
Dấu = xảy ra khi a=b=c