Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
Lại áp dụng tương tự ta có:
\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)
\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)
Từ (1) và (2) suy ra:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Bài 1:
Áp dụng BĐT Cô -si, ta có:
\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)
\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)
Cộng vế theo vế ta được:
\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
p/s: không chắc lắm, có gì sai xót xin giúp đỡ
từ cái điều kiện đầu=>a;b;c;d<(=)2
=>a4(2-a)+b4(2-b)+c4(2-c)+d4(2-d)>(=)0
<=>2a2+2b4+2c4+2d4>(=)a5+b5+c5+d5
<=>32>(=)a5+b5+c5+d5(đpcm)
dấu bằng khi 1 trong 4 số =2
CHÚ Ý: BÀI TOÁN SAU:
Nếu x+y+z=0 thì \(x^3+y^3+z^3=3xyz\)
Trở lại với bài toán: chú ý: a-1+b-1+c-1=0
=> \(\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3=3\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Ta phải CM: (a-1)(b-1)(c-1)\(\ge\)\(-\frac{1}{4}\)
đặt: x=a-1, y=b-1, z=c-1
khi đó bài toán trở thành: x+y+z=0, CM xyz\(\ge-\frac{1}{4}\)
Ta có: -y=x+z => CM xz(x+z)\(\le\frac{1}{4}\)
Áp dung BĐT Cauchy và biến đổi đồng nhất
tương tự với -x và -z cộng lại ta được DPCM
bn c/m điều ngược lại
Vd: cho 0=<a,b,c=<4/3 và a+b+c=2. CMR a^2+b2+c^2=2
ta có : \(a^8+b^8-a^6b^2-a^2b^6\ne\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\)
và \(a^2b^2\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\) cũng có thể âm
\(\Rightarrow\) sai
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(a^2+1+1+1\right)\left(1+\left(\frac{b+c}{2}\right)^2+\left(\frac{b+c}{2}\right)^2+1\right)\ge\left(1.a+\frac{b+c}{2}.1+\frac{b+c}{2}.1+1.1\right)^2\)
\(\Leftrightarrow4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)
MẶT KHÁC ÁP DỤNG BĐT AM-GM TA CÓ:
\(\left(b^2+3\right)\left(c^2+3\right)=3b^2+3c^2+b^2c^2+1+8=2b^2+2c^2+\left(b^2+c^2\right)+\left(b^2c^2+1\right)+8\)
\(\ge2b^2+2c^2+2bc+2bc+8=2\left(b+c\right)^2+8=4\left(\frac{\left(b+c\right)^2}{2}+2\right)\)
NHƯ VẬY:
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(\frac{\left(b+c\right)^2}{2}+2\right)\left(a^2+3\right)\ge4\left(a+b+c+1\right)^2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c=1
Ta dự đoán được đẳng thức xảy ra khi a = b = c = 1.
Theo nguyên lí Dirichlet tồn tại trong ba số\(a^2-1;b^2-1;c^2-1\) tồn tại ít nhất hai số có tích không âm. Không mất tính tổng quát,giả sử rằng \(\left(a^2-1\right)\left(b^2-1\right)\ge0\)
\(\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Leftrightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8=4\left(a^2+b^2+2\right)\)
\(\Leftrightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+1+1\right)\)
\(\Leftrightarrow VT\ge4\left(a^2+b^2+1+1\right)\left(1+1+1+c^2\right)\)
Áp dụng BĐT Bunhiacopxki suy ra \(VT\ge4\left(a+b+c+1\right)^2\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a = b = c = 1
Đúng không ạ???
Một cách khác mà hôm nay ngủ dạy lại nghĩ ra :))
Áp dụng liên tiếp BĐT Svacxo cho 3 các số dương ta được :
\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\)
\(=\frac{\left(a+b\right)^4}{1}+\frac{\left(b+c\right)^4}{1}+\frac{\left(c+a\right)^4}{1}\ge\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{1+1+1}\)
\(=\frac{\left[\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\right]^2}{3}=\frac{\left[\frac{\left(a+b\right)^2}{1}+\frac{\left(b+c\right)^2}{1}+\frac{\left(c+a\right)^2}{1}\right]^2}{3}\)
\(\ge\frac{\left[\frac{\left(a+b+b+c+c+a\right)^2}{3}\right]^2}{3}=\frac{\left(\frac{2^2}{3}\right)^2}{3}=\frac{16}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta đi chứng minh BĐT : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
BĐT trên tương đương : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( Đúng )
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)
+) Ta xét : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\)\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\) (*)
Lại có : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Nên từ (*) suy ra \(x^4+y^4+z^4\ge\frac{\left(\frac{\left(x+y+z\right)^2}{3}\right)^2}{3}=\frac{\left(x+y+z\right)^4}{27}\)
Áp dụng vào bài toán với \(\hept{\begin{cases}x=a+b\\y=b+c\\z=c+a\end{cases}}\) ta có :
\(\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4\ge\frac{\left(a+b+b+c+c+a\right)^4}{27}=\frac{2^4}{27}=\frac{16}{27}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Vậy BĐT được chứng minh !
.