K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2024

Lời giải:

Áp dụng TCDTSBN:

$\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}$

$\Rightarrow \frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}$

Hay $(\frac{a+b+c}{b+c+d})^3=\frac{a}{d}$ (đpcm)

Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{a}{b}\right)^3=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)

Vậy \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

22 tháng 7 2019

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}.\)

\(\Rightarrow\hept{\begin{cases}3a=b+c+d\\3b=a+c+d\end{cases};\hept{\begin{cases}3c=a+b+d\\3d=a+b+c\end{cases}}}\)

Trừ vế theo vế ta có :\(\hept{\begin{cases}3\left(a-b\right)=b-a\\3\left(b-c\right)=c-b\\3\left(c-d\right)=d-c\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a-b=b-a=0\\b-c=c-b=0\\c-d=d-c=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}}\)=>a=b=c=d

\(\Rightarrow M=1+1+1+1=4\)

22 tháng 7 2019

Giải : Ta có: \(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{d+a+b}=\frac{d}{b+c+a}\)

=> \(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{b+c+a}{d}\)

=> \(\frac{b+c+d}{a}+1=\frac{c+d+a}{b}+1=\frac{d+a+b}{c}+1=\frac{b+c+a}{d}+1\)

=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\) => a = b = c = d

Khi đó, ta có: M = \(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

                       = \(\frac{a+a}{a+a}+\frac{b+b}{b+b}+\frac{c+c}{c+c}+\frac{d+d}{d+d}\)

                        = \(1+1+1+1=4\)

22 tháng 11 2021

Answer:

Có vài chỗ mình sửa lại đề nhé!

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}\)

\(\Rightarrow3a=b+c+d\)

\(\Rightarrow3b=a+c+d\)

\(\Rightarrow3c=a+b+d\)

\(\Rightarrow3d=a+b+c\)

Ta có: 

\(3a+3b=b+c+d+a+c+d\)

\(\Rightarrow3.\left(a+b\right)=a+b+2c+2d\)

\(\Rightarrow2.\left(a+b\right)=2.\left(c+d\right)\)

\(\Rightarrow a+b=c+d\)

Tương tự: 

\(\Rightarrow b+c=a+d\)

\(\Rightarrow c+d=a+b\)

\(\Rightarrow d+a=b+c\)

Ta có: 

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}\)

\(=1\)

29 tháng 11 2019

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

29 tháng 12 2016

\(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

\(\Rightarrow\frac{2016a}{a}+\frac{b+c+d}{a}=\frac{2016b}{b}+\frac{a+c+d}{b}=\frac{2016c}{c}+\frac{a+b+d}{c}=\frac{2016d}{d}+\frac{a+b+c}{d}\)

\(\Rightarrow2016+\frac{b+c+d}{a}+1=2016+\frac{a+c+d}{b}+1=2016+\frac{a+b+d}{c}+1=2016+\frac{a+b+c}{d}+1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

\(\Rightarrow a=b=c=d\)

\(Khiđó:M=1+1+1+1=4\)