K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2023

Giúp vs mn ơi

8 tháng 8 2023

Cái cuối là c(1/a+1/b) nha mn

15 tháng 9 2023

a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

\(\Rightarrow2ab\text{=}2bc+2ca\)

\(\Rightarrow2ab-2bc-2ca\text{=}0\)

Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)

\(\text{=}a^2+b^2+c^2\)

Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)

\(\Rightarrow A\text{=}a+b-c\)

Vì a;b;c là các số hữu tỉ suy ra : đpcm

b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)

Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)

Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)

Từ đây ta thấy giống phần a nên :

\(B\text{=}a+b-c\)

\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)

Suy ra : đpcm.

Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.

2 tháng 2 2018

Bài 2:

c) 

Theo bài ra ta có:

\(a+b+c=1\Rightarrow\hept{\begin{cases}1+\frac{b}{a}+\frac{c}{a}=\frac{1}{a}\\1+\frac{a}{b}+\frac{c}{b}=\frac{1}{b}\\1+\frac{a}{c}+\frac{b}{c}=\frac{1}{a}\end{cases}}\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\frac{b}{a}+\frac{a}{b}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\ge9\left(\text{BĐT côsi}\right)\)

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

Bn đăng từng bài thui, nhìu quá à.....!!

30 tháng 1 2018

vào đây bạn nhé

Câu hỏi của Nguyễn Võ Văn Hùng

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)

25 tháng 1 2018

sv 5 thui

3 tháng 9 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)     

Do  \(a+b+c=1\)

nên   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

Dấu "=" xảy ra khi  \(a=b=c=\frac{1}{3}\)