Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có \(a+b+c=0;\overline{ab}+\overline{bc}+\overline{ca}=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=0\)
Mà \(a^2;b^2;c^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Dấu "=" xảy ra khi a;b;c = 0
Thay vào biểu thức ta có:
\(\left(0-1\right)^{2016}+\left(0-1\right)^{2017}+\left(0-1\right)^{2018}\)
\(=\left(-1\right)^{2016}+\left(-1\right)^{2017}+\left(-1\right)^{2018}\)
\(=1+\left(-1\right)+1\)
\(=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2. \(Q=\left(x-3\right)\left(4x+5\right)+2019\)
\(Q=4x^2+5x-12x-15+2019\)
\(Q=4x^2-7x+2004\)
\(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\)
\(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)
\(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)
\(\Rightarrow Q\ge\frac{32255}{16}\)
\(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)
3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)
\(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\)
\(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\) (do a+b=1)
\(T=4a^2-4ab+4a^2-6a^2-6b^2\)
\(T=-2a^2-4ab-2b^2\)
\(T=-2\left(a^2+2ab+b^2\right)\)
\(T=-2\left(a+b\right)^2\)
\(T=-2.1^2=-2.1=-2\) (do a+b=1)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay a3+b3=(a+b)3-3ab(a+b) vào giả thiết ta có:
(a+b)3-3ab(a+b)+c3-3abc=0
<=> [(a+b)+c].\(\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)-3ab(a+b+c)=0
<=> (a+b+c) (a2+b2+c2-ab-bc+c2-3ab)=0
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
- Nếu a+b+c=0
\(\Rightarrow A=\frac{b+a}{b}\cdot\frac{c+b}{c}\cdot\frac{a+c}{a}=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}\Rightarrow A=-1\)
- Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> a=b=c
Khi đó \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\Rightarrow\frac{1}{a+b+c}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow c\left(a+b\right)\left(a+b+c\right)=ab\left(-a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(ca+cb+c^2\right)+ab\left(a+b\right)=0\Rightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Rightarrow\left(a+b\right)\left(c+a\right)\left(b+c\right)=0\)
=> Trong 3 số a,b,c có 2 số đối nhau.Giả sử a = -b thì a9 + b9 = 0.
Tương tự giả sử b = -c hay a = -c thì b99 + c99 = 0 hay c999 + a999 = 0
Vậy biểu thức cần tính bằng 0.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)
Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)
\(=0+1+0=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{c-\left(a+b+c\right)}{c\left(a+b+c\right)}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}a+b=0\\b+c=0\\c+a\end{cases}}=0\Leftrightarrow\hept{\begin{cases}a=-b\\b=-c\\c=-a\end{cases}\Leftrightarrow\hept{\begin{cases}a^3=-b^3\\b^3=-c^3\\c^3=-a^3\end{cases}}\Leftrightarrow\hept{\begin{cases}a^3+b^3=0\\b^3+c^3=0\\c^3+a^3=0\end{cases}}}\)
(ko có kí hiệu hoặc cho 3 cái nên mk dùng kí hiệu và nhé)
Do đó \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=0\)
em mới học lớp 5 nên ko giúp đc gì, mong chị tha lỗi. chúc chị học giỏi nha