K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

9 tháng 10 2016
  • Ta có: \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)
    <=> (a+b).(c-d) = (a-b).(c+d) 
    <=> ac-ad+bc-bd = ac+ad-bc-bd
    <=> bc-ad = ad-bc
    <=> 2bc = 2ad
    <=> bc=ad
    <=> a/b=c/d
17 tháng 11 2017

Vì a = b+c => b = a-c

Ta có : c = bd/ b-d

=>c/d = b/b-d

=> c/d = a-c / b-d = c +a-c / d +b-d = a/b

Vậy a/b = c/d

Nhớ like cho mình

17 tháng 11 2017

điều kiên:
b<>d <>0
=> c<>0
a=b+c
=> a<>0
*
c=(b.d):(b-d).
=> c*(b-d)=b*d
=>cb-cd=b*d
=>cb=cd+bd
=>=cb=d(b+c)=ad (vì b+c=a)
cb=ad (từ cái này xoay kiểu gì cũng được)
c:d=a:b
a/b=c/d >>>dpcm
c/a=d/b

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

 

13 tháng 10 2016

đề sai \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)

13 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

\(\Rightarrow VT=\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\left(1\right)\)

\(\Rightarrow VP=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) =>Đpcm

31 tháng 1 2022

Bài 7:

a) Vì \(AB\perp AC\) (giả thiết)

Mà \(KH\perp AC\)

\(\Rightarrow AB//KH\) (từ vuông góc đến song song)

b) Xét \(\Delta AKI\) có:

\(AH\) vừa là đường trung tuyến, vừa là đường cao

\(\Rightarrow\Delta AKI\) cân tại \(A\)

c) Vì \(\Delta AKI\) cân tại \(A\) (chứng minh trên)

\(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (1)

Ta có: \(AB//KH\left(cmt\right)\)

\(\Rightarrow\widehat{AKI}=\widehat{BAK}\) (\(2\) góc so le trong) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AIK}=\widehat{BAK}\)

d) Vì \(AH\) là đường phân giác \(\widehat{A}\)

\(\Rightarrow\widehat{IAH}=\widehat{KAH}\)

Xét \(\Delta AIC\) và \(\Delta AKC\) có:

\(AK=AI\) (do \(\Delta AKI\) cân tại \(A\))

\(\widehat{IAH}=\widehat{KAH}\left(cmt\right)\)

\(AC\) là cạnh chung

\(\Rightarrow\Delta AIC=\Delta AKC\left(c.g.c\right)\)

 Bài 8:

a: Xét ΔBDH vuông tại H và ΔCEK vuông tại K có

BD=CE

\(\widehat{DBH}=\widehat{ECK}\)

Do đó: ΔBDH=ΔCEK

Suy ra: HB=KC

b: Xét ΔAHB và ΔAKC có 

AB=AC

\(\widehat{ABH}=\widehat{ACK}\)

BH=CK

Do đó: ΔAHB=ΔAKC

Suy ra: \(\widehat{AHB}=\widehat{AKC}\)

c: Xét ΔADE có 

AB/BD=AC/CE

nen BC//DE

hay HK//DE

15 tháng 7 2017

Cộng thêm 1 vào mỗi đẳng thức, ta được :

\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)

Vì các tử số của mỗi tỉ số bằng nhau suy ra các mẫu số của mỗi tỉ số bằng nhau

\(\Rightarrow b+c+d=a+c+d=a+b+d=a+b+c\)

\(\Rightarrow a=b=c=d\)

\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{a+d}{a+b}+\frac{d+a}{c+d}\)

\(A=1+1+1+1=4\)

5 tháng 1 2016

áp dụng tính chất dãy tỉ số bằng nhau ta có a/(b+c+d)=b/(c+d+a)=c/(a+b+d)=d/(a+b+c)=(a+b+c+d)/(b+c+d+c+d+a+a+b+d+a+b+c)

=(a+b+c+d)/(3a+3b+3c+3d)=1/3

vì a+b+c+d khác 0 nên a=b=c=d

từ đó =>A=(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)+(a+a)/(a+a)=1+1+1+1=4