K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

bài này phải a;b dương nhá

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)=\left(1+1+\frac{b}{a}\right)\left(1+1+\frac{a}{b}\right)\)

\(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)=4+2\frac{a}{b}+2\frac{b}{a}+1=5+2\left(\frac{a}{b}+\frac{b}{a}\right)>=5+2\cdot2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}\)(bđt cosi)

\(=5+2\cdot2=5+4=9\)

dấu = xảy ra khi \(\frac{a}{b}=\frac{b}{a}\Rightarrow a=b=\frac{1}{2}\)

vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)>=9\)khi a=b=\(\frac{1}{2}\)

12 tháng 5 2018

dài dòng quá làm gọn hơn

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

\(=1+\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}\ge1+\frac{4}{a+b}+\frac{4}{\left(a+b\right)^2}\)

\(=1+4+4=9\)

Vậy........ khi \(a=b=\frac{1}{2}\)

31 tháng 1 2020

\(VT-VP=\frac{\Sigma_{cyc}\left(a-b+c\right)\left(a-b\right)^2}{abc}\ge0\) ( do a,b,c là 3 cạnh của 1 tam giác ) 

27 tháng 2 2021

Đặt A = \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\)

A = \(\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\)(Vì a + b = 1)

A = \(\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\)

A = \(4+\frac{2a}{b}+\frac{2b}{a}+1\)

A = \(5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

Vì a, b dương nên áp dụng BĐT Cô - si cho 2 số dương, ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ba}}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2.1=2\)

\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

\(\Leftrightarrow5+2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4+5\)

\(\Leftrightarrow A\ge9\)

Dấu bằng xảy ra \(\Leftrightarrow\)a = b > 0

Vậy \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)với a, b là các số dương và a + b = 1

27 tháng 2 2021

Tớ quên. Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}a=b>0\\a+b=1\end{cases}}\)

\(\Leftrightarrow a=b=\frac{1}{2}\)

12 tháng 4 2019

Ta có \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\)       (1)

\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)

\(\Leftrightarrow ab+a+b+1\ge9ab\) (vì ab > 0)

\(\Leftrightarrow a+b+1\ge8ab\Leftrightarrow2\ge8ab\) (vì a + b = 1)

\(\Leftrightarrow1\ge4ab\Leftrightarrow\left(a+b\right)^2\ge4ab\)   (vì a + b = 1)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)  (2)

Bất đẳng thức (2) đúng, mà các phép biến đổi trên tương đương, vậy bất đẳng thức (1) được chưng minh.

7 tháng 2 2020

1+1/a= 1+ (a+b)/a = 2+b/a

tương tự: 1+1/b= 2+a/b

nhân 2 đa thức với nhau đc : 5+2a/b+2b/a=5+2(a/b+b/a)

áp dụng bđt cô si a/b+b/a >=2     =) 5+2(a/b+b/a)>=9 (dấu = xảy ra khi a-b=1/2)