K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

Có điều kiện a khác b k bạn 

15 tháng 7 2016

 

Ta có
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2+b^2-ab=\left(a+b\right)^2-3ab=1-3ab\ge1-\frac{3\left(a+b\right)^3}{4}=1-\frac{3}{4}=\frac{1}{4}\)
Vậy  Min  M  =\(\frac{1}{4}\)

 

17 tháng 9 2018

Ta có: \(a+b=1\Rightarrow a=1-b\)

\(M=a^3+b^3\)

     \(=\left(a+b\right)\left(a^2-ab+b^2\right)\)

     \(=a^2-ab+b^2\)

     \(=\left(1-b\right)^2-\left(1-b\right).b+b^2\)

     \(=1-2b+b^2-b+b^2+b^2\)

     \(=3b^2-3b+1\)

     \(=3\left(b^2-b+\frac{1}{4}\right)+\frac{1}{4}\)

     \(=3\left(b-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\forall b\)

Dấu "=" xảy ra khi: \(b-\frac{1}{2}=0\Rightarrow b=\frac{1}{2}\Rightarrow a=1-b=1-\frac{1}{2}=\frac{1}{2}\)

Vậy GTNN của M là \(\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2}\)

Chúc bạn học tốt

26 tháng 7 2016

bài này dễ ẹt ak 

nhưng giúp mình bài này đi 

chotam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

25 tháng 12 2017

Ta có : P = x4 + x2 - 6x + 9 = x4 + (x2 - 6x + 9) = x4 + (x - 3)2

Mà : x4 \(\ge0\forall x\in R\) 

       (x - 3)\(\ge0\forall x\in R\)

Nên : P = x4 + (x - 3)2 \(\le x-x-3=-3\) 

Vậy GTNN của P = 3 khi x = 0 

       

8 tháng 6 2015

câu 2: gọi biểu thức là A đi

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=1.\left[\left(a+b\right)^2-3ab\right]+ab=\left(a+b\right)^2-2ab=1-2ab\)

\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow ab\le\frac{1}{4}\)(chỗ 4ab là cộng 2 vế với 2ab đó)

\(\Leftrightarrow-ab\ge\frac{-1}{4}\Leftrightarrow-2ab\ge-\frac{1}{2}\Rightarrow1-2ab\ge\frac{1}{2}\Rightarrow A\ge\frac{1}{2}\Rightarrowđpcm\)

 

15 tháng 6 2018

1,Ta có: \(A=a^3+b^3+ab\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)

\(=a^2-ab+b^2+ab\)

\(=a^2+b^2\)

\(=\left(a+b\right)^2-2ab\)

\(=1-2ab\)

\(a+b=1\Rightarrow a=1-b\)

Khi đó \(A=1-2\left(1-b\right)b\)

\(=1-2b-2b^2\)

\(=2\left(b^2-b+\dfrac{1}{4}\right)+\dfrac{1}{2}\)

\(=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)

\(2\left(b-\dfrac{1}{2}\right)^2\ge0\Rightarrow A=2\left(b-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(\left(b-\dfrac{1}{2}\right)^2=0\Leftrightarrow b=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{2}\)

Vậy \(MinA=\dfrac{1}{2}\Leftrightarrow a=b=\dfrac{1}{2}\)

2, \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}=\dfrac{-2}{\left(3x-1\right)^2+4}\)

\(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+4\ge4\)

\(\Rightarrow\dfrac{1}{\left(3x-1\right)^2+4}\le\dfrac{1}{4}\)

\(\Rightarrow B=\dfrac{-2}{\left(3x-1\right)^2+4}\ge\dfrac{-2}{4}=\dfrac{-1}{2}\)

Dấu "=" xảy ra khi \(3x-1=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MinB=\dfrac{-1}{2}\Leftrightarrow x=\dfrac{1}{3}\)

15 tháng 6 2018

Cách khác :

Bài 1. Ta có : \(a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\)

Áp dụng BĐT Bunhiacopxki , ta có :

\(\left(a^2+b^2\right)\left(1^2+1^2\right)\)\(\left(a+b\right)^2\)

\(a^2+b^2\)\(\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)

⇔ GTNN của \(a^2+b^2\)\(\dfrac{1}{2}\) . Đẳng thức xảy ra khi : \(x=y=\dfrac{1}{2}\)

Bài 2. \(B=\dfrac{2}{6x-5-9x^2}=\dfrac{-2}{9x^2-6x+5}\)

\(B=\dfrac{-4}{2\left(9x^2-6x+5\right)}=\dfrac{-9x^2+6x-5+9x^2-6x+1}{2\left(9x^2-6x+5\right)}\)

\(B=\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\)

Do : \(\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\) ≥ 0 ∀x

\(\dfrac{-1}{2}+\dfrac{\left(3x-1\right)^2}{2\left(3x-1\right)^2+8}\)\(\dfrac{-1}{2}\)

\(B_{Min}=\dfrac{-1}{2}\)\(x=\dfrac{1}{3}\)

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

24 tháng 4 2021

a)Ta có:

 \(a+b+ab=a^2+b^2\).

\(\Leftrightarrow a^2-ab+b^2=a+b\).

Ta có:

\(P=a^3+b^3+2020\).

\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).

\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).

\(P=\left(a+b\right)^2+2020\).

Ta có:

\(\left(a+b\right)^2\ge0\forall a;b\).

\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).

\(\Rightarrow P\ge2020\).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).

Vậy \(maxP=2020\Leftrightarrow a=b=0\).

24 tháng 4 2021

b)\(A=\frac{27-12x}{x^2+9}\).

Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.

 \(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)

\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).

Ta có:

\(\left(2x+3\right)^2\ge0\forall x\).

\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).

\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).

\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).

\(\Rightarrow A\le4\).

Dấu bằng xảy ra.

\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).

Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).

9 tháng 2 2021

Em yêu anh