K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\left(a+b\right)^3-3ab\left(a+b\right)=1-3ab\)

Áp dụng bđt AM-GM ta có

\(M\ge1-3.\frac{\left(a+b\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

10 tháng 3 2020

\(M=\frac{\left(4a-2b-1\right)^2}{16}+\frac{3\left(2b-1\right)^2}{16}+\frac{1}{4}\ge\frac{1}{4}\)

Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)

Hoặc một cách phân tích khác:

\(M=\frac{\left(a+1\right)\left(2a-1\right)^2}{4}+\frac{\left(b+1\right)\left(2b-1\right)^2}{4}+\frac{1}{4}\ge\frac{1}{4}\)

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

20 tháng 11 2016

a3+b3=(a+b)(a2+ab+b2)= a2+ab+b2

20 tháng 11 2016

Ta có : b = 1 - a, do đó M= a3+(1-a)3 = 3 (a-1/2)2 + 1/4 ≥ 1/4. Dấu "=" xảy ra khi a = 1/2

Vậy min M = 1/4     a=b=1/2

Không biết đúng k nữa,sai thì nói mình nha

30 tháng 9 2018

\(a+b=1\Rightarrow\left(a+b\right)^2=a^2+2ab+b^2=1\)

\(\Rightarrow ab=\frac{1-a^2-b^2}{2}\)

\(\Rightarrow M=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=1-3ab\)

\(=1-\frac{3-3a^2-3b^2}{2}\)

Để M nhỏ nhất

\(\Rightarrow\frac{3-3\left(a^2+b^2\right)}{2}\)phải có Max

=> \(3-3\left(a^2+b^2\right)\)đạt Max

Có \(3-3\left(a^2+b^2\right)\le3\left(Dấu"="xayrakhia=0;b=0\right)\)

Vậy Min M = 1-3/2=-1/2

Với a = 0 ; b = 0

30 tháng 9 2018

M=a3+b3

=(a+b)(a2 +b2 + ab) ( hằng đẳng thức)

Mà a+b=1 nên:

M=a2 +b2 - ab

M= ( a^2 + b^2 + 2ab) - 3ab

M= ( a+b)2 - 3ab

Lại có a+b=1 nên:

M= 12 - 3ab = 1 - 3ab 

3ab \(\le\)\(\frac{3\left(a+b\right)^2}{4}\)

=> M \(\ge\)\(-\)​​​​​​\(\frac{3\left(a+b\right)^2}{4}\) = 1-3/4 = 1/4

Do đó MinM = 1/4

=>a=b=1/2

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

19 tháng 9 2016

\(M=a^3+b^3\)

\(=\left(a+b\right)\left(a^2+b^2-ab\right)\) ( Hằng đẳng thức )

Mà \(a+b=1\) , nên :

\(M=a^2+b^2-ab\)

      \(=\left(a^2+b^2+2ab\right)-3ab\)

      \(=\left(a+b\right)^2-3ab\)

Lại có : \(a+b=1\) , nên :

\(M=1^2-3ab=1-3ab\)

\(3ab\le\frac{3\left(a+b\right)^2}{4}\)

\(\Rightarrow M\ge1-\frac{3\left(a+b\right)^2}{4}=1-\frac{3}{4}=\frac{1}{4}\)

Do đó : \(Min_M=\frac{1}{4}\) 

\(\Rightarrow a=b=\frac{1}{2}\)

19 tháng 9 2016

Ta có : \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=1-3ab\)

Vì \(a+b=1\) là một tổng không đổi nên ab đạt giá trị lớn nhất khi a = b

=> -ab đạt giá trị nhỏ nhất khi a = b mà a + b = 1 => a = b = 1/2

Thay a = b = 1/2 vào M được \(a^3+b^3\ge\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^3=\frac{1}{4}\)

Vậy min M = 1/4 <=> a = b = 1/2

12 tháng 2 2016

Ta có :
M = a3 + b= (a+b)- 3ab(a+b) = 1-3ab 
Áp dụng BĐT Cosi , ta được :
a+b lớn hơn hoặc bằng 2.căn(ab)
=> 2.căn(ab) nhỏ hơn hoặc bằng 1 (vì a+b=1)
=>ab nhỏ hơn hoặc bằng 1/4 
=> 3ab nhỏ hơn hoặc bằng 3/4
=> 1-3ab lớn hơn hoặc bằng 1/4
hay : M lớn hơn hoặc bằng 1/4 
Dấu "=" xảy ra khi : 
a=b và a+b=1 <=> a=b=1/2 
Vậy : MinM=1/4 đạt được tại a=b=1/2


 

12 tháng 2 2016

sorry, mìh mới học lớp 7

15 tháng 7 2016

Ta có \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=a^2-ab+b^2\)

Ta lại có \(a+b=1\Rightarrow a=1-b\)

\(a^2-ab+b^2=\left(1-b\right)^2-b\left(1-b\right)+b^2=b^2-2b+1-b+b^2+b^2\)

\(=3b^2-3b+1=3\left(b^2-b+\frac{1}{3}\right)=3\left(\left(b-\frac{1}{2}\right)^2+\frac{1}{12}\right)\ge3.\frac{1}{12}=\frac{1}{4}\)

Vậy Min M=1/4 <=> b=1/2;a=1/2

15 tháng 7 2016

bằng 1