K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

=1+1/a+1/b+1/ab  (1)

Áp dụng Cosy ta có  1/a+1/b>=4/(a+b)=4  (2)

  (a+b)^2>=4ab   nên ab<=(a+b)^2/4=1/4  hay 1/ab>=4  (3)

Từ (1)(2)(3)  ta đc 1+1/a+1/b+1/ab>=1+4+4=9  (đpcm)

21 tháng 4 2016

Ta có: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)=\left(1+\frac{a+b}{a}\right)\left(1+\frac{a+b}{b}\right)\) \(=\left(1+1+\frac{b}{a}\right)\left(1+1+\frac{a}{b}\right)\) \(=\left(2+\frac{b}{a}\right)\left(2+\frac{a}{b}\right)\) \(=4+2\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{ab}{ab}\) \(=5+2\left(\frac{a}{b}+\frac{b}{a}\right)\)

. Áp dụng BĐT Cô-si cho 2 số \(\frac{a}{b}\) và \(\frac{b}{a}\) , ta có:

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{ab}{ab}}=2\) . Suy ra \(2\left(\frac{a}{b}+\frac{b}{a}\right)\ge4\)

. Suy ra \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge5+4=9\) (đpcm)

. Dấu "=" xảy ra khi \(a=b\)

3 tháng 5 2015

Vế trái = \(1+\frac{1}{b}+\frac{1}{a}+\frac{1}{ab}=1+\frac{a+b+1}{ab}=1+\frac{2}{ab}\)

ta có: a + b \(\ge2.\sqrt{ab}\) => (a+b)2  \(\ge\left(2.\sqrt{ab}\right)^2=4.ab\Rightarrow ab\le\frac{1}{4}\Rightarrow\frac{1}{ab}>4\)

=> Vế trái \(\ge\) 1 + 2.4 = 9

Dấu = khi a = b = 1/2

 

\(\left(a+1\right)\left(b+1\right)\ge1\)

\(=>ab+a+b+1\ge1\)

\(=>1+a+b+1\ge1\)( luôn đúng ) (* )

KL : (* ) (đúng )  => \(\left(a+1\right)\left(b+1\right)\ge1\)(đúng )

KL 

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

31 tháng 8 2021

Áp dụng BĐT Cauchy Schwarz dạng Engel 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Dấu ''='' xảy ra khi a = b = c